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PREFACE 
This work is about applications of mathematical statistics to ordnance, 

especially to the dispersion of rounds in the pattern of fall of shot. 

Although mathematics is used here, this is not a book of mathematics. 

No mathematical proofs are offered. 

This book is intended for engineers, scientists, and other technical 

workers engaged in designing, developing, testing or maintaining 

ordnance systems. Those systems usually involve the fire or delivery of 

an ordnance warhead onto a target. Such a delivery process always 

involves an error, to a greater or lesser extent, in the placement of the 

warhead. The dispersion of the shot, rounds, or warheads is the subject 

of this work. 

References are given at the end of each chapter and at the end of the 

book to more extensive treatments of the several statistical methods used 

here. 

The writer wishes to acknowledge the many insights gained from co-

workers over 29 years at the Naval Ordnance Laboratory in White Oak, 

Maryland. Dr. Russell Glock was very helpful in explaining several 

applications of statistics. Dr. Bordelon’s warnings about the pitfalls and 

subtleties of probability and statistics often come to mind. Dr. Cohen’s 

guidance was helpful, and Dr. van Tuyl’s encouragement to investigate 

computer graphics made this book possible. Dr. Ellingson’s kindly 

scholarship is missed. He was a master algebraist; I have not met his 

equal at that art. Jim Bob McQuitty was one of the very best at applied 

mathematics. He too, is missed. Col. E. H. Harrison, U.S. Army, Rtd. and 

Senior Technical Editor of the American Rifleman magazine recognized 

and encouraged my efforts. 

Many librarians have contributed their skilled services to this work. All 

the staff of the Technical Library at the Naval Ordnance Laboratory, 

White Oak, Maryland were helpful over many years. Mr. Wes Price at the 

Dahlgren Laboratory has provided his assistance. Mr. Neil Young of the 



 

 

Imperial War Museum, London and Mr. Russell Lee of the Smithsonian 

Air and Space Museum shared their understanding of a term used in 

aircraft bombing. Shirley and Linda at the Smoot Library in King 

George, Virginia have cheerfully aided my searches. 

Doug Miller has kindly reviewed the equations herein. 

Of course, I owe all to the patience of my wife Judith. 

  



 

 

Editor’s Note 
 

The author, Lewis Michael Campbell, passed away in 2019. This work 

was collected and edited by his son, Steven Campbell. The material was 

composed of images, spreadsheets, and text that utilized software that is 

no longer commonly available. Any errors or omissions are almost 

certainly the fault of the editor. 
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INTRODUCTION 
 

This book is intended for weapons officers, artillery officers, fire 

controllers, strike planners, and damage assessment analysts. In addition, 

ordnance program managers and others will benefit from study of the 

methods presented. 

Application of mathematical statistics is the subject in this work. This 

involves a review of the normal probability distribution. That review has 

been kept short, as most readers of this book will have studied at least an 

elementary course in statistics, and many will have completed more 

advanced work. 

Discussion begins with a graph illustrating a typical pattern of fall of 

shot, or impact pattern of a group of rounds of any kind. Variance, 

standard deviation and circular error probable (CEP) are mentioned as 

being usual measures of scatter. Sample mean and median are discussed 

in their role as common measures of central tendency. The use of small 

arms as models of larger guns leads to a comparison of large versus small 

gun designs. Similarity of chemistry of propellants is observed. Some 

current gun development efforts are mentioned. Conventional terms 

used in discussions of graphs are noted. 

Normal, bivariate normal, and circular normal probability density 

distributions are introduced and discussed. The Rayleigh density 

distribution is presented as a development of the circular normal. The 

concept of the circular error probable (CEP) is introduced. Notes and 

references are given. 

Use of the term CPE versus CEP is discussed. Circular error probable 

is derived and shown on a contour plot. The ratio of radius from center 

of impact to circular error probable (R/CEP) is developed .Graphs and 

tables of the relationship between probability and (R/CEP) are 

presented. 



 

 

Some current ordnance developments are discussed. “Accurate” 

versus “Very accurate” versus “Precision” weapons are defined. 

Examples of applications of the tables are given. Effects of launch 

damage and long-term storage are considered. Non-circular patterns of 

dispersion are mentioned. 

Calculation of the CEP from test data is discussed. An example of the 

calculation is given, and a table is presented to be used in correcting a 

bias found in the ordinary method for calculation of standard deviation. 

Another characteristic of patterns of impact of rounds is the central 

tendency, or tendency of the points to cluster around a particular point 

or line. The median is introduced as an alternative to the mean for 

description of central tendency. An example from small arm sight 

adjustment is presented. The procedure is applicable to adjustment of 

sights for any direct-fire weapon. 

Regarding the question of mean versus median in practical 

applications of statistics, the work of Tokishige Hojo is reviewed. A 

numerical study shows the accuracy of his calculations. The median is 

shown to be satisfactory for many if not all applications. 

Nonparametric statistics is considered. The work of S. S. Wilks is 

applied to an example from manufacturing production quality control. 

The larger sample sizes needed in the nonparametric approach are 

balanced against freedom from having to first identify the underlying 

probability distribution. 

An application of nonparametric statistics is made to the extreme 

spread of rounds upon a target. The relationship among confidence, 

sample size and population coverage is shown. 

Sturges’ rule for plotting of histograms is discussed. A table of sample 

size versus quantity of bins recommended is given. The importance of 

Sturges’ rule as a symmetry test and in studying the probability 

distribution underlying a sample is emphasized. The probable derivation 

of Sturges’ rule from the binomial distribution is given. This derivation is 



 

 

from the late Mr. G. J. Bradley, by kind permission of Mr. J. R. King. A 

sketch of the details of the computation of the table is given. 

Extreme-value probability theory and plotting is applied to the 

extreme spreads from small arms targets. Comparison of the histogram 

to a graph of the extreme-value probability density function indicates that 

an extreme-value plot might be applicable. The plot of extremes is made, 

and examples are given of the estimates which may be made. 

An application of statistical analysis to a psychovisual experiment is 

made. The experiment compares mean position of a small sample with 

the center estimated by eye. The result indicates that the human eye is 

quite accurate in its estimation of position. 



CHAPTER  1 

AN EXAMPLE OF DISPERSION OF ROUNDS IN 

EXTERIOR BALLISTICS 

 

Figure 1.1 shows a typical pattern of fall of shot, or impact pattern of 

a salvo or group of rounds. This pattern is similar to those found on 

targets fired on small arms firing ranges. The ten rounds are scattered 

randomly across the target. In the case of small arms, the scale markings 

might represent one-inch divisions on the target. In the case of aircraft 

bombs, naval gunfire or ground forces artillery, the scale divisions would 

likely be meters or yards. The statistical methods used to describe the 

dispersion of rounds is the same in all these cases. 

An obvious characteristic of the pattern is the manner in which the 

individual rounds are scattered across and along the target plane. The 

measure of amount of scatter is the variance or its square root, the 

standard deviation. A measure of scatter which is more often used in 

military and naval parlance is the circular error probable or CEP. The 

CEP is discussed more fully in chapters following. 

A larger number of rounds, or sample, would show that the group of 

rounds has a tendency to cluster toward the center. There are several 

measures commonly used to define the center of the group, with the 

mean and median being used most often. The mean is simply computed, 

being the average distance of the positions of the rounds as measured 

along a given axis. The mean is the measure of central tendency used in 

the normal probability distribution, which will be familiar to the readers 

of this work. A brief review of that distribution will be given in the 

following chapter. Those readers whose memory needs no refreshing 

may simply pass over the discussion there. 
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In this work, the writer often has used small arms fire, or the pattern 

of bullet holes upon a plane target as an example for statistical analysis. 

In such a case, the small arm is a convenient model for any larger size 

gun. Gun designs of all sizes use the same materials except that wood is 

used only in some small arms today. The chemistry of propellants used in 

large guns is the same as that for small arms, with two exceptions. The 

current developments of liquid propellants and electrothermal-chemical 

(ETC) propellant systems have no counterparts in small arms. But the 

primary difference between the trajectory of small arms and that of large 

guns is the much greater range of the large gun projectile. For accurate 

fire at long range, the gunner must correct for both the curvature of the 

earth’s surface and the rotation of the earth (the Coriolis correction). 

Neither correction is made for small arms fire. Other than the differences 

noted, the small arm is an excellent model for the study of fire from 

larger guns. 

A note on graphs. In the discussions on graphs, the abscissa may be 

referred to as the “x” axis, or the lateral direction. The ordinate may be 

called the “y” axis or vertical axis if a vertical target is considered or the 

range axis if surface bombardment is the subject of discussion. 





 

 

CHAPTER  2 

THE NORMAL PROBABILITY DISTRIBUTION 

 

Introduction 

Figure 1.1 shows how bullet holes or round impacts appear on a plane 

target or plane surface around a target or aimpoint. The following 

paragraphs address application of the normal probability distribution to 

describe the dispersion of rounds. 

NORMAL (GAUSSIAN) PROBABILITY DISTRIBUTION 

It is established that dispersion of rounds of gunfire at moderate 

ranges is well described by the normal or Gaussian probability 

distribution. This distribution is often written as follows: 

 

p(x) = (1/s(2_)1/2)*(e
-((x-m)^2)/2s2  

EQ.2.1 

 

where: 

 

p(x) = normal probability density function 

x = a random variate. x may take on any value between minus to plus 

infinity. 

s = standard deviation. A measure of the magnitude of dispersion of 

the  variable. The standard deviation is always a positive number. 

m = mean of the distribution. The mean may be any number. 

e = 2.718..._ = 3.14159... (of course) 

^ means:  ‘raised to the power of’ 

The function p(x) is called a density function by analogy to mechanics 

or mathematical dynamics, in which the density of a given body is 

defined by a mathematical function, and the mass of the body is 

computed by integrating the density function throughout the volume of 

the body. 



 

 

The so-called ‘standard’ normal probability density function is 

described and tabulated in many references. The standard normal 

probability density function is computed by setting the mean to zero and 

the standard deviation equal to unity. Figure 2.1 shows a graph of the 

standard function. The peak of the function is equal to 0.3989... . 

Equation 2.1 describes the dispersion of the rounds along the abscissa 

in Figure 1.1. A separate probability density function will describe the 

dispersion of the rounds in the ordinate direction in Figure 1.1. It would 

be the same as EQ.2.1, but with y replacing x, and perhaps other values 

for standard deviation and mean. 

In the world in which naval and military operations take place, every 

observation is influenced by many random factors or errors. These 

random errors introduce uncertainty into our our measurements and 

predictions. Hence, designers of sensor or detection systems speak of 

‘noise in the system’. That is to say, our every observation or 

measurement is in fact a function, to a greater or lesser extent, of 

multiple random variates. In the simplest multivariate case, the random 

part of the observation depends upon only two variables, for example, 

our x and y above. If also the variables are normally distributed, the   
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resulting probability distribution is often termed bivariate normal. In 

many practical cases, the dispersion in one direction is statistically 

independent of the dispersion in other directions. That is to say, given 

knowledge of the value of the horizontal position of a certain round, one 

cannot predict the vertical position of that or any other round. 

Conversely, one cannot predict the horizontal position from knowledge 

of the vertical position. If, in addition to the circumstance of 

independent variables, one has the standard deviation of the horizontal 

variate (our x) equal to the standard deviation of the vertical variate (our 

y), the resulting probability density function is called circular normal. An 

equation for the circular normal probability density function having zero 

means is as follows: 

 

p(x,y) = (1/2ps2)*(e
-((x^2+ y^2)/2s^2))  

EQ.2.2
 

 

In EQ.2.2,  s is the standard deviation of either x or y, as the two are 

equal. 

Other terms have the same meanings as before. The means of both x 

and y are zero, and do not appear in EQ.2.2. 

Figure 2.2 shows how a plot of EQ.2.2 might look if viewed from 

above and to one side. The plot is made for values of x and y between 

minus 2 and plus 2 and with standard deviation of 1.0. In the figure, the 

function p(x,y) is multiplied by 10 to make the shape of the function 

more apparent.  

  



 

 

 

FIGURE 2.2  BIVARIATE (CIRCULAR) NORMAL PROBABILITY DENSITY  

 

WITH  X AND Y INDEPENDENT, MEANS ZERO, AND STANDARD DEVIATIONS EQUAL TO 1.0.

 

  



 

 

As the range of both x and y is limited, Figure 2.2 does not show the 

manner in which the function approaches the x,y plane as x and y 

become large and p(x,y) approaches zero. However, the plot does give 

the reader a general idea of the function and its symmetry. The plot 

appears much like a small mound or hillock situated upon a plain. The 

function has a low peak in the center equal to 1/2p, approximately 0.159. 

The probability that a point lies in any given area of the x,y plane is 

found by computing the volume that lies above the given area and below 

the p(x,y)  probability density surface. 

This circular normal probability density function may be expressed in 

polar coordinates as: 

 

p(R) = (R/s2)*(e
-((R^2)/2s^2))  EQ.2.3 

 

where R2 = x2 + y2; mean of x = mean of y = 0, 

and  ^  means ‘raised to the power of’, as before. 

R is the radius vector from the origin of the coordinate system and s is 

the common standard deviation as in  p(x,y). 

The polar form of the circular normal probability function is 

sometimes known as the Rayleigh distribution, and has a number of 

applications. For example, it is used to describe the characteristics of 

reverberation in active sonar transmission. Figure 2.3 shows a graph of 

how the probability varies as a function of radius R. 
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The probability P associated with a given value of R is found by 

integrating p(R)  (EQ. 2.3) from zero to R. The result is: 

 

P = 1 - e-(R^2)/2s^2  
EQ.2.4 

 

where P is the probability that a point chosen at random will lie within 

a given distance R from the origin of the polar coordinate system. Or 

consider the game of darts. Suppose that an unbiased dart is thrown at 

the center of a dart board. EQ. 2.4 gives the probability that the dart will 

strike within R units of the center. By virtue of the manner in which all 

probabilities are defined, P may be zero or unity or any number in 

between. Equation 2.4 incorporates the coordinate system and 

probability distribution function to which the measure of dispersion 

known as the circular error probable is applied. The circular error 

probable is discussed in the next chapter. 

 

  



 

 

NOTES AND REFERENCES FOR 

CHAPTER 2 
 

The normal or Gaussian probability distribution is described in most 

introductory statistics and probability texts. Or see 

 

Burington, R. S. and May, D. C., Jr., “Handbook of Probability and 

Statistics with Tables,” Handbook Publishers, Inc., Sandusky, OH, 1958. 

 

The application of the normal distribution to dispersion of rounds is 

well established. See: 

Crow, E. L., Davis, F. A., Maxfield, M. W., “Statistics Manual,” 

Dover, NY, 1960. 

 

Grubbs, F. E., “Statistical Measures of Accuracy for Riflemen and 

Missile  Engineers,” 1964. 

 

Gnedenko, B. V. and Kinchin, A. Ya., “An Elementary Introduction 

to the Theory of Probability,” Dover, NY, 1962. 

 

Herrman, E. E., “Exterior Ballistics,” U.S Naval Institute, Annapolis, 

MD, 1935. 

 

For application of the Rayleigh probability density to reverberation, 

see: 

Urick, R. J., “Principles of Underwater Sound,” 3rd ed., McGraw, 

1983.  



 

 

CHAPTER  3 

THE CIRCULAR ERROR PROBABLE 

 

Introduction 

In the analysis of ordnance systems, a commonly-used measure of 

dispersion of the fall of bombs or the strike of projectiles is the “circular 

error probable.” This measure, often abbreviated “CEP,” is defined as 

the radius of the circle centered on the mean point of impact which 

would contain half of all impact points, given a large number of impacts. 

This chapter presents a graph of the relationship between CEP and the 

underlying probability, and also presents tables of the CEP versus 

probability, and of the inverse relationship. 

A note on the terms used 

The CEP is applicable to description of the dispersion of a wide 

variety of munitions. It has been applied to gun projectiles, bombs, 

rockets, guided missiles, and guided or homing bombs as well as small 

arms bullets. To avoid the confusion of constantly shifting terms, the 

writer will use the term “round” to refer to any one of the above named 

munitions. The word “round” is well established, having come into naval 

parlance with the introduction of cannon on board ship. Round shot 

referred to the spherical ball fired in early gun designs. 

In some earlier work, the term “circular probable error” (CPE) is 

used. CPE has the same definition and meaning as CEP, and may be 

used interchangeably. For clarity, only the term CEP is used here. 

The last chapter developed the circular normal probability distribution 

in polar coordinates, leading to EQ.2.4, repeated here: 

 

P = 1 - e-(R^2)/2s^2   
EQ.3.1 

 

The origin of the coordinate system is understood to be at the center 

of impact of the rounds. The radius vector R may take on any value 



 

 

greater than or equal to zero. Let some value of the radius vector R, say 

R0, be chosen. Then the probability P that a point chosen at random on 

the plane will lie at a distance equal to or less than R0 is given by EQ.3.1. 

In the study of gunnery, EQ.3.1 allows the introduction of a measure 

of dispersion of the fall of shot, or rounds. For a particular gun, rocket, 

bombing or missile system, a ready measure of dispersion is given by the 

radius R which will enclose half of the rounds delivered under a given set 

of conditions. To find this value of R, set P equal to 0.5 in EQ.3.1 and 

solve for R. The result is: 

 

CEP = s(2LN(2))1/2 = (1.1774)s  EQ.3.2 

 

LN( ) = “natural logarithm of ( )” 

 

That particular value of R is called the ‘circular error probable’, 

abbreviated CEP. Substituting EQ.3.2 back into EQ.3.1, we have: 

 

P = 1 - e-(((R/CEP)^2)*Ln(2))  
EQ.3.3 

 

By expressing the probability P in terms of the ratio of radius R to 

CEP, the equation is generalized to every size of pattern of rounds. 

In what follows, the discussion is in terms of the ratio of the radius R 

to the CEP. By use of the ratio R/CEP, the graphs and tables are made 

general and apply to any system, no matter how large or small its CEP. 

This will be made clearer in the examples to be discussed.  
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Figure 3.1 shows a contour plot, looking down upon the plane. The 

rounds must be imagined to fall upon this perfect plane, with the center 

of impact of the group, salvo or stick of bombs at the intersection of the 

axes shown. Half of the rounds should lie within the circle labeled P = 

0.5, given a large number of rounds delivered under constant conditions. 

The radius to the P = 0.5 circle is the CEP for that particular ordnance 

system and conditions. For example, a small caliber machine gun fired at 

a range of two hundred yards might have a CEP of about eight to twelve 

inches or more, depending upon a great many factors. A battalion 

concentration of artillery fire would likely have a CEP of dozens of yards 

or meters, as would a salvo or pattern of rounds of naval gunfire. The 

CEP of unguided bombs or rockets will be even larger. The introduction 

of guidance and homing systems into bombs and missiles will greatly 

reduce the CEP, but can never completely eliminate it. Also in Figure 3.1, 

about 94 percent of the rounds will fall within a radius of twice the CEP. 

And finally, only about two rounds out of a thousand are likely to fall 

beyond three times the CEP from the center of impact of the pattern of 

rounds. These relations are summarized in Table 3.1. If committed to 

memory, Table 3.1 is helpful in discussions and evaluations of competing 

ordnance systems. For example, a rough estimate of the likely 

effectiveness of a particular weapon against a given target may be made 

by comparing twice the CEP to the dimensions of the target. Twice the 

CEP will enclose 15/16, or nearly all of the rounds. If twice the CEP is 

comparable to or less than the dimensions of the target, a properly-aimed 

strike should be effective. 
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TABLE 3.2  RATIO OF RADIUS TO CIRCULAR ERROR PROBABLE  (R/CEP)  FOR 

GIVEN PROBABILITY (P) 
 

P R/CEP 
 

P R/CEP 

0.02 0.170723009 
 

0.52 1.029025602 

0.04 0.24268022 
 

0.54 1.058439528 

0.06 0.298776402 
 

0.56 1.088312718 

0.08 0.346834591 
 

0.58 1.118721935 

0.1 0.389875741 
 

0.6 1.149751319 

0.12 0.42944682 
 

0.62 1.181494256 

0.14 0.466466971 
 

0.64 1.214055678 

0.16 0.501536406 
 

0.66 1.247554948 

0.18 0.535074 
 

0.68 1.282129553 

0.2 0.567387077 
 

0.7 1.317939905 

0.22 0.598710256 
 

0.72 1.355175733 

0.24 0.629228636 
 

0.74 1.39406473 

0.26 0.659092425 
 

0.76 1.434884556 

0.28 0.688426603 
 

0.78 1.477979895 

0.3 0.717337558 
 

0.8 1.523787418 

0.32 0.745917789 
 

0.82 1.572873545 

0.34 0.774249359 
 

0.84 1.625993908 

0.36 0.802406499 
 

0.86 1.684191577 

0.38 0.830457633 
 

0.88 1.748969322 

0.4 0.858467002 
 

0.9 1.822615729 

0.42 0.886496021 
 

0.92 1.908888732 

0.44 0.914604432 
 

0.94 2.014669623 

0.46 0.94285136 
 

0.96 2.154960833 

0.48 0.971296284 
 

0.98 2.375680153 

0.5 1 
 

0.99 2.577567883 

 

  



 

 

Figure 3.2 shows a graph of EQ.3.3. It may be seen that the 

probability P is 0.5 at R/CEP equal to 1.0. Figure 3.2 illustrates the slow 

rate of change of the probability at larger values of R/CEP. 
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TABLE 3.3  PROBABILITY  (P)  FOR RATIO OF RADIUS TO CIRCULAR ERROR 

PROBABLE (R/CEP) 

 

R/CEP P 
 

R/CEP P 

0 0 
 

2.6 0.990773495 

0.1 0.006907505 
 

2.7 0.99361014 

0.2 0.027345053 
 

2.8 0.995635597 

0.3 0.060477251 
 

2.9 0.997060065 

0.4 0.104974929 
 

3 0.998046875 

0.5 0.159103585 
 

3.1 0.998720319 

0.6 0.22083542 
 

3.2 0.9991731 

0.7 0.287974902 
 

3.3 0.999473033 

0.8 0.358287051 
 

3.4 0.999668798 

0.9 0.429618142 
 

3.5 0.999794703 

1 0.5 
 

3.6 0.999874498 

1.1 0.567731384 
 

3.7 0.999924334 

1.2 0.631432696 
 

3.8 0.999955009 

1.3 0.690073075 
 

3.9 0.999973616 

1.4 0.742971543 
 

4 0.999984741 

1.5 0.789775896 
 

4.1 0.999991297 

1.6 0.830424459 
 

4.2 0.999995104 

1.7 0.86509647 
 

4.3 0.999997284 

1.8 0.894156836 
 

4.4 0.999998514 

1.9 0.918100412 
 

4.5 0.999999198 

2 0.9375 
 

4.6 0.999999573 

2.1 0.952961039 
 

4.7 0.999999776 

2.2 0.965084777 
 

4.8 0.999999884 

2.3 0.974440561 
 

4.9 0.999999941 

2.4 0.98154699 
 

5 0.99999997 

2.5 0.986860994 
 

5.1 0.999999985 

  



 

 

In Figure 3.3, the probability is plotted as a straight line against 

nonlinear axes. This graph is useful for estimating probabilities. It also 

shows the slow change of probability for large R/CEP. Figure 3.3 is 

plotted from EQ.3.4: 

 

LG[-LN(1-P)] = 2LG(R/CEP) + LG[LN(2)]  EQ.3.4 

 

where LG[ ] = logarithm to the base 10 or  common logarithm 

and LN( ) = natural logarithm. 

 

TABLE 3.1  SHORT TABLE OF PROBABILITY FOR SELECTED VALUES OF (R/CEP). 

 

R/CEP PROBABILITY FRACTION COMMENT 

1 0.5 1/2 EXACT 

2 0.9375 15/16 EXACT 

3 0.998+ > 998/1000 APPROX. 

 

  



 

 

EQ.3.4 is of course the point-slope intercept form of the equation of 

a straight line: 

 

y = mx + b 

 

with y = LG[-LN(1-P)],  m =2,  x = LG(R/CEP), and b = 

LG[LN(2)]. 

EQ.3.4 is derived from EQ.3.3. 

For the analysis of data from tests or in planning the tests themselves 

in a research, development or munitions surveillance program, more 

precise values of probability or R/CEP may be needed. Tables 3.2 and 

3.3 provide information which may be of value. Table 3.2 gives R/CEP 

for selected values of probability P from 0.2 to 0.99. Table 3.3 treats the 

inverse problem, giving the values of probability P for selected values of 

R/CEP going from 0.05 to 5.1. 

In the next chapter we consider applications of these tables. 

  



 

 

NOTES AND REFERENCES FOR 

CHAPTER 3 
 

For a derivation of CEP see pp. 99-101 of: 

Burington, R. S. and May, D. C., Jr., “Handbook of Probability and 

Statistics with Tables,” Handbook Publishers, Inc., Sandusky, OH, 1958. 

 

Another derivation of the CEP is found on p. 29 of: 

Crow, E. L., Davis, F. A., and Maxfield, M. W., “Statistics Manual,” 

Dover,  NY, 1960. 

  



 

 

CHAPTER  4 

APPLICATIONS OF TABLES OF THE CEP 

 

Current Ordnance Development 

As this is being written (editor’s note: approximately 1997), among the more 

recent ordnance developments are the aircraft-delivered joint standoff 

weapon (JSOW) and the joint direct attack munition (JDAM). The JSOW 

is the more accurate of the two, with a CEP of 33 feet (nominal ten 

meters). The JSOW combines global positioning system (GPS) and 

inertial navigation system (INS) elements in an integrated guidance 

system. The JDAM is a nominal 2,000 pound bomb with a GPS - INS 

unit installed in the tail fin assembly. The JDAM achieves an accuracy of 

15 to 20 meters CEP. 

Based upon Mr. Canan’s paper (see reference at end of chapter) , we 

may classify these weapons according to accuracy (probable terminal 

error) as follows: 

 

“Accurate” munition: 15 to 20 meters CEP  (example: JDAM) 

 

“Very accurate” munition: nominal 10 meters CEP  (example: JSOW) 

 

“Precision” guided munition  (PGM) : 3 meters CEP or less 

 

The above definitions are somewhat different from those in technical  



 

 

usage. In general, a precision device has a small dispersion, or random 

error. An accurate device must have a small systematic, or aiming error, 

in addition to having a small random error. 

The classifications as given above of weapons systems by their 

terminal accuracy or error is necessarily somewhat subjective and perhaps 

arguable. But the several classes seem satisfactory for practical 

operational use in the near future. 

It seems clear that the circular error probable will be used widely in 

designing, developing, testing and operational planning for these 

weapons. The tables and graphs presented here should prove useful in all 

those areas. 

The following discussion is based entirely upon artificially-generated 

or “school problems.” However, the problems will serve to illustrate the 

use of the tables. 

 

1. Suppose a Joint Standoff Weapon test is being planned. This 

weapon has a CEP of (nominal) 10 meters. A number of JSOW are to be 

launched against a test target. 

What is the radius of the circle around the mean point of impact 

which should enclose 99 percent of the impacts? 

In Table 3.2, at probability P of 0.99 the corresponding R/CEP is 

2.58. So 

R = CEP(2.58) = 10(2.58) = 25.8 meters. 

Thus, 99 percent of the JSOW units should fall within 25.8 meters of 

the mean point of impact. 

2. A Joint Direct Attack Munition (JDAM) has struck 32 meters from 

the mean point of impact of the group of JDAM launched against the 

target. The JDAM is considered an “accurate” munition with a CEP of 

15 to 20 meters. 

Is it likely that this particular JDAM is defective? 

The R/CEP is 32/15 = 2.13 to 32/20 = 1.6. We use the case of 2.13 

to enter Table 3.3. At R/CEP of 2.1, P equals .953. Hence there is a 95 



 

 

percent chance that a properly-operating JDAM will fall as far as 32 

meters from the mean point of impact. This performance is within the 

range of what we might reasonably expect. Hence, we cannot state that 

the munition is defective. 

3. The JDAM strike considered in case 2 above is being reviewed. The 

production lot sample acceptance test data show that the lot actually 

achieved a CEP of 20 meters. 

How does this additional information affect our conclusion? 

As R/CEP = 32/20 =1.6, enter Table 3.3 at 1.6 to find P equal to 

0.83. Thus there is a 17 percent chance that a JDAM from that particular 

production lot might fall as far as 32 meters (or more) from the mean 

point of impact. The 32-meter radius of this particular impact is not 

especially large, given the CEP of 20 meters from the lot test data. 

Some Cautions 

At this juncture, some warnings and cautions are in order. First, the 

calculations of radius made above are estimates of the impact radius of 

the munition and do not take into account the lethal radius of the 

munition’s warhead. Hence the tables cannot be used alone in safety or 

effectiveness studies. Secondly, munitions are usually stored, often for a 

very long time before being employed. While in the stockpile, the 

performance of the munition does not improve. We may anticipate a 

gradual decrease in performance as munitions age. Thus, the dispersion 

of the munitions may increase. The analyst must be aware of this 

possibility and of the effect it may have on system effectiveness and 

personnel safety. Thirdly, the calculations assume that environmental 

influences do not change. This clearly is not true. The weather, for 

example, has much influence upon operations and is continuously 

changing. Fourth, it can occur that a munition is slightly damaged during 

the launching process. For example, an air-launched weapon may, on rare 

occasions, strike the fuselage or other part of the delivering aircraft. 

When this does occur, the stabilizing fins or control surfaces of the 

weapon may be slightly distorted. This bend or distortion may cause the 



 

 

munition to fly in an erratic manner. That particular munition cannot and 

will not obey the calculations and predictions made for it. 

Another question concerns the shape of the pattern of fall of shot, or 

impact points of the rounds. In many practical cases, the pattern is 

roughly circular, and the development presented here is applicable. In 

other cases, such as the pattern of gunfire at long range against a surface 

target, the pattern tends to become elongated in range. This is especially 

serious for Marines calling in gun fire support, as the number of “short 

rounds” tends to increase as the range increases. Since gun fire support is 

often over and beyond the position of friendly troops, a short round is a 

serious matter. 

A more obvious non-circular pattern is that of a long “stick” of 

bombs. In that case, the pattern is not even roughly circular, and other 

methods will have to be used to characterize the dispersion. 

Tables 3.2 and 3.3 present more significant figures than are likely to be 

needed for the simple estimates made above. However, the tables were 

left in the form given because it is not possible to predict the many uses 

to which the tables may be put. It may be that the additional precision of 

the tables will find application in some other work. 

  



 

 

NOTES AND REFERENCES FOR 

CHAPTER 4 
 

The information on JSOW and JDAM is from the Navy League 

publication Sea Power: 

Canan, J. W., “Smart and Smarter,” Sea Power, Vol. 38, No. 4, Navy 

League of the United States, Arlington, VA, April 1995. 

 

“JSOW Moves Forward,” Sea Power, Navy League of the United 

States, Arlington, VA, April 1997. 

 

For a method for analyzing severely non-circular patterns, see pp 112-

115 of: 

Burington, R. S. and May, D. C., Jr., “Handbook of Probability and 

Statistics with Tables,” Handbook Publishers, Inc., Sandusky, OH, 1958.  



 

 

CHAPTER  5 

CALCULATING THE CEP FROM TEST DATA 

 

Introduction 

In previous chapters, calculations have been performed using given 

values of circular error probable (CEP). This chapter discusses the steps 

needed to obtain the desired value of CEP. 

Test Data 

For most weapons and especially explosive ordnance, the likely value 

of CEP to be obtained is a characteristic of first importance. Early in the 

research or development program, ballistics or flight and guidance tests 

should give a few preliminary samples of data. These early data will give 

some indication of the CEP to be expected. Later in the development or 

Low-Rate-Initial-Production (LRIP) program, larger sample sizes will be 

made available. It may be possible to pool some of the data to obtain a 

larger sample size, but this must be done with care, since engineering 

changes made throughout the development program may cause some 

units to perform in a manner unlike the majority of the population. 

Those units belong to a different population, and their data should not 

be included with production design units. The purpose of combining 

data is of course to increase the sample size and thereby increase 

confidence in the estimates made. 

In early stages of programs, sample sizes are small, and care must be 

taken to wring as much information from the available data as possible. 

In what follows, we show a method by which the estimate of CEP may 

be made more accurate. 

First consider the first three rounds of table 6.1, duplicated below: 

  



 

 

 

SHOT NO. HORIZ. (X)  VERT. (Y) 
1 -1.72 2.84 
2 -1.37 2.98 
3 0.15 -0.02 

 

Now suppose that the numbers represent measured impact points 

from a test of a Precision Guided Munition, with distances measured in 

meters. Let us determine the CEP. First we calculate the standard 

deviation of the horizontal, or ‘x’ values. We use this equation to 

calculate the standard deviation of the sample: 

 

sX =STD. DEV.(X) = [(S(Xi-MEAN(X))2/(N-1)]1/2 EQ.5.1 

 

The S or sum is taken over the number of data points, and in this case 

the index number i goes from 1 to 3. The result is: 

 

STD. DEV.(X) = 0.994 = sX 

A similar calculation for the Y data gives: 

 

STD. DEV.(Y) = 1.670.= sY 

 

The usual method of calculating the standard deviation is slightly 

biased. The result is that the calculated standard deviation is somewhat 

smaller than the theoretically expected value. Frank Grubbs has shown 

how the bias may be corrected (see references at end of chapter). Table 

5.1 gives the correction factors to be used for sample sizes of from 2 

through 20. For our sample size of 3, the correction factor is 1.1284. 

After multiplying each standard deviation by 1.1284, we have the 

corrected value of: 

 

sX(corrected) = 1.122  

and 



 

 

sY(corrected) = 1.88 

 

In theory, the two standard deviations should be equal, but we may 

expect influences from many causes, and the small sample size allows 

considerable variation from test to test. Let us combine the two sample 

standard deviations sX and sY to give an estimate of the common standard 

deviation for the calculation of the CEP. Since we can add the variances 

directly, let us simply average, or take the mean of the squares of the two 

standard deviations, and then take the square root of that mean: 

 

[((sX)2 +(sY)2)/2]1/2 = 1.55 meters = s(estimated). 

 

Now we may estimate the CEP from: 

 

CEP = [(2*LN(2))1/2]*(s(estimated)) = (1.1774)*(1.55) = 1.83 meters. 

 

So the estimate of CEP is CEP = 1.83 meters. 

This estimate may now be used in making the calculations and 

estimates similar to those described in earlier chapters.  



 

 

TABLE 5.1  CORRECTION FACTORS FOR STANDARD DEVIATIONS CALCULATED 

FROM SMALL SAMPLES. 

 

SMPL SIZE (N) STD.DEV. CORR. 

2 1.2533 

3 1.1284 

4 1.0854 

5 1.0638 

6 1.0509 

7 1.0424 

8 1.0362 

9 1.0317 

10 1.0281 

11 1.0253 

12 1.023 

13 1.021 

14 1.0194 

15 1.018 

16 1.0168 

17 1.0157 

18 1.0148 

19 1.014 

20 1.0132 

  



 

 

The corrections given in Table 5.1 differ from those given by Grubbs, 

because of a change that has occurred in the method used in calculating 

the standard deviation. Grubbs used the method common at that time of 

taking the square root of the average of the squared deviations from the 

mean. In computing the average, the sum is divided by the sample size, 

N. Today when computing sample standard deviations, we divide by (N-

1) which is a simple, if slightly inaccurate, method of correcting for bias. 

As Table 5.1 shows, the correction needed is largest at sample size N of 

2, where the bias is slightly more than 25 percent low. The magnitude of 

correction needed decreases rapidly as sample size increases, becoming 

less than five percent for sample sizes of seven or more. 

Table 5.1 is computed by taking the reciprocal of equation (15) on p. 

23 of Grubbs’ book. This becomes: 

 

correction factor = [(N/2)1/2]*[G(N-1)/2]/[G(N/2)] EQ.5.2 

 

where G is the gamma function.  



 

 

NOTES AND REFERENCES FOR 

CHAPTER 5 
 

The gamma function is discussed by Burington and also in most texts 

on special functions. 

Burington, R. S. and May, D. C., Jr. , “Handbook of Probability and 

Statistics with Tables,” Handbook Publishers, Inc., Sandusky, OH, 1958. 

 

The correction for the standard deviation is on p. 23 of: 

Grubbs, F. E., “Statistical Measures of Accuracy for Riflemen and 

Missile Engineers,” 1964. 

 

For a discussion of the gamma function, see chapter 2 of: 

Rainville, E.D., “Special Functions,” MacMillan, NY, 1960. 

  



 

 

CHAPTER  6 

THE MEDIAN AND ITS APPLICATION TO THE 

SPOTTING OF ROUNDS 

 

Introduction 

In studying a sample of data, one often looks for a single number to 

characterize the entire set or group of numbers. An “average” value of 

some sort is wanted. The mean is the most used of the possible averages 

which might be chosen. The mean has the great virtue of simplicity of 

calculation, being the sum of the data values divided by the total number 

of such values. In many probability distributions, including the normal, 

the mean describes the center of the distribution. But the mean is not the 

only measure of central tendency available. The median is an excellent 

indicator of center, in some respects, superior to the mean. 

As used here, a ‘spot’ is a correction applied to weapon or battery 

orders to bring the rounds onto the target. ‘Spotting’ refers to the process 

of observing the fall of shot and estimating the necessary corrections. For 

ground forces artillery, ‘adjustment of fire’ means essentially the same as 

spotting. A similar procedure is used to adjust gun sights on small arms 

and other direct-fire weapons. 

The Median 

For a theoretical probability distribution, the median is defined to be 

that location such that a point chosen at random has equal probability of 

being greater than or less than the given median location. That is, a 

randomly-chosen point has a probability of 0.5 of being less than the 

median and a probability of 0.5 of being greater than the median. 

The median of a sample is defined to be a value which is greater in 

size than half of the elements of the sample and less than the other half. 

By virtue of its definition, the median is independent of the parameters 

of any given probability distribution. Hence it is fair to consider the 

median a non-parametric measure of central tendency. 



 

 

Now consider the following sample of five elements: 

 

1.5 

3.1 

5.2 

7.8 

9.6 

 

The median is 5.2. When dealing with small samples having an odd 

number of elements, one quickly picks the center element as the median 

(5.2 in the example above). For a sample having an even number of 

elements, it is customary to compute the median as the mean of the two 

centermost elements. For example, given the sample: 

 

1.5 

3.1 

5.2 

7.8 

9.6 

11.3 

 

the median is taken to be 1/2(5.2+7.8) = 6.5. The median computed 

in this manner is truly correct only in the special case in which the two 

centermost elements have the same value. 

A practical rule for calculating the median is as follows: sort the 

measured values in order of size. Then number each value according to 

its position, one for the first, two for the second, and so on. In general, 

the median point is (1/2)*(n+1), where n is the sample size, or total 

number of elements in the sample.  

  



 

 

TABLE 6.1  SMALL ARM PROJECTILE IMPACTS ON VERTICAL TARGET. 

 

SHOT NO. HORIZ. (X)  VERT. (Y) 

1 -1.72 2.84 

2 -1.37 2.98 

3 0.15 -0.02 

4 0.37 2.68 

5 0.55 5.85 

6 0.91 4.76 

7 1.48 1.45 

8 1.98 3.04 

9 2.22 2.81 

10 2.53 1.98 

NOTES:    

(1)   DEVIATIONS DEFINED AS POSITIVE UPWARD AND TO THE RIGHT. 

(2)   SHOTS NUMBERED SEQUENTIALLY BY HORIZONTAL POSITION, LEFT TO RIGHT. 

(3)   DEVIATIONS MEASURED IN INCHES. 

  



 

 

In the 10-shot sample of Table 6.1, the horizontal (X) data are sorted 

in order of size. The median point lies at (1/2)*(10+1) = 5.5. Of course, 

no sample point lies at that position, so the value of the (horizontal) mid-

point between shots 5 and 6 is computed as follows: (1/2)*(0.55+0.91) = 

0.73. A sample having an odd number of elements is easier to deal with. 

Consider a nine-shot salvo of naval gunfire. The median shot is 

(1/2)*(9+1) = 5. The fifth shot, counting along the range direction from 

either end of the pattern, is the median in range, and it may be used as an 

estimate of the center of impact. This estimate is particularly important, 

as it may be used in the adjustment of fire; that is, the adjustment of the 

laying of the battery to give the maximum number of hits upon the 

target. 

Perhaps the most important quality of the median is that it is not 

disturbed by changes in the variance or in the extreme values of the 

sample. An increase or decrease in the pattern size will not disturb the 

median. Also, an extreme round that falls somewhat closer to or farther 

from the center of impact will not change the median. By way of 

contrast, the mean point of impact is affected by any change in the 

position of impact of any round. 

Figure 6.1 illustrates the use of the median in the adjustment of a 

gunsight. The discussion here is in terms of small arms. Suppose that a 

rifle shooter has fired a group of five shots upon a vertical target at a 

fixed range. The shots are distributed upon the target as in Figure 6.1. 

The aim-point is at the crossing of the numerically labeled axes. We find 

the median of the group as follows: 

The ordinal number of the median shot is (N+1)/2 = (5+1)/2 = 3. 

Thus we count from the top shot down (or bottom shot up) to the third 

bullet hole and strike a horizontal line across the target, as shown. 

Similarly, after counting from the leftmost shot rightward to the third 

shot, we strike a vertical line down to intersect the horizontal line which 

was struck previously. This intersection is the median of the group, as 

labeled. It may happen that a particular round is the median in both the 



 

 

horizontal direction and in the vertical direction. In that case, the 

position of the median of the group is at the location of that particular 

round. 
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The adjustment of the rifle sights is done as follows: 

The rifle is placed in a simple holding fixture and moved or shimmed 

until it is aimed exactly at the aim point (the intersection of the numbered 

axes in Figure 6.1). The rifle is securely clamped in place, being careful 

that the aim is not disturbed. Then the sights are adjusted so as to aim 

directly at the median of the group as labeled in the figure. Now the 

sights have been adjusted to point directly at the median position of the 

group, and the rifle is said to be “sighted in.” All that remains is to fire a 

group of shots at the same range to verify the sight setting. 

The procedure is somewhat simpler if the rifle has an optical or 

telescopic sight having a crosshair reticle. In that case, the shooter may 

aim at the aim point used to fire the group, and clamp the rifle in place. 

Then the horizontal cross hair is adjusted to cut, as nearly as possible, the 

third bullet hole counting from the top or bottom. A similar procedure is 

performed with the vertical cross hair. Then the reticle is secured and a 

check target is fired to verify that the sight setting is correct. 

Essentially the same procedure will work for automatic cannon or 

machine guns on armored vehicles or aircraft, as well as tank cannon or 

other direct-fire weapons, including those using laser, infrared or low-

light-level sighting systems. 

  



 

 

NOTES AND REFERENCES FOR 

CHAPTER 6 
 

The paper by Campbell contains many printing errors. The reader 

should review the Naval Engineers Journal, July 1983, pp. 153-156 for 

corrections. 

Campbell, L. M., “Applications of Hybrid Statistics and the Median,” 

Naval Engineers Journal, Washington, D.C., January, 1983. 

 

The practical use of the median for the spotting of rounds was 

pointed out by Herrman: 

Herrman, E. E., “Exterior Ballistics,” U.S Naval Institute, Annapolis, 

MD, 1935. 

 

For a more general approach to the calculation of the sample median, 

see: 

Jackson, Dunham, “Note on the Median of a Set of Numbers,” 

Bulletin of the American Mathematical Society, Vol. 27, pp. 160-164, 

1921. 

 

A summary of Dunham Jackson’s approach is found in: 

Whittaker, E., and Robinson, G., “The Calculus of Observations,” 

Dover, pp 197-199, NY,1967. 

 

The writer has used the median for the adjustment of sights on small 

arms. The procedure is effective and efficient.   



 

 

CHAPTER  7 

MEDIAN VERSUS MEAN IN SMALL SAMPLES 

FROM A NORMAL DISTRIBUTION 

 

Introduction 

Practical applications of statistics often involve gathering a sample of 

data and “reducing” the sample to a few numbers. Typically the average 

or mean is computed in order to have a measure of the center of the 

sample. The population from which the sample is drawn is sometimes 

called the parent population. Occasionally, the researcher is sampling 

from a physical process with a known probability distribution. For 

example, in the case of gunfire at a vertical target at moderate range, the 

rounds usually will be normally distributed in both the vertical and in the 

horizontal directions. In addition, the sample mean is also normally 

distributed with sample mean equal to the parent population mean and a 

standard deviation of: 

 

standard deviation of sample mean = smean = s/(N)1/2 

 

where  s  is the standard deviation of the parent population and  N  is 

the sample size, that is, the number of measured values available for 

study. 

Theory shows that the mean of the sample median is also equal to the 

mean of the parent population. Thus we expect the sample median to 

provide an unbiased estimate of the center of the sample. 

  



 

 

The theory also indicates that the dispersion or variance of the median 

is greater than that of the mean. If we take the standard deviation (the 

square root of the variance) as our measure of dispersion, then the ratio 

of the standard deviation of the median to the standard deviation of the 

mean is generally greater than unity. Indeed, as the sample size N 

becomes larger and larger, the ratio 

 

[smedian/smean]  approaches  (p/2)1/2 = 1.2533... 

 

Thus, at worst case in sampling from a normally distributed variate, 

the sample median might have a standard deviation approximately 25 

percent greater than the standard deviation of the mean. For much 

research work, the question is moot, since the researcher often (if not 

usually) begins without knowledge of the statistical distribution being 

dealt with and is fortunate to have any well-behaved measure of central 

tendency. 

With small samples, the ratio of standard deviations is not so great. 

This ratio (of standard deviations of sample median to sample mean) for 

small samples from a normal population) was studied by Tokishige Hojo. 

  



 

 

TABLE 7.1  RATIO OF STANDARD DEVIATION OF MEDIAN TO STANDARD DEVIATION OF 

MEAN, COMPARED TO THEORETICAL VALUES, SAMPLES FROM NORMAL DISTRIBUTION. 

 

N THEORY NBS 

RATIO 

NBS % 

ERROR 

RAN  

RATIO 

RAN % 

ERROR 

2 1 1 0 1 0 

3 1.1602 1.14817 -1.037 1.17021 0.863 

4 1.0922 1.08555 -0.609 1.09549 0.301 

5 1.1976 1.19318 -0.369 1.20289 0.442 

6 1.1351 1.13468 -0.037 1.14681 1.032 

7 1.2137 1.21161 -0.172 1.22587 1.003 

8 1.16 1.1696 0.828 1.16387 0.334 

9 1.2226 1.22123 -0.112 1.22799 0.441 

10 1.1768 1.17508 -0.146 1.17488 -0.163 

11 1.2286 1.22356 -0.41 1.24058 0.975 

12 1.1898 1.19115 0.113 1.18779 -0.169 

   



 

 

The values of the ratio of standard deviation of sample median to 

standard deviation of sample mean as calculated by Hojo for sample size  

N  are given in the second column of Table 7.1, headed “THEORY.” 

These are the theoretical values which are used as reference in 

subsequent calculations. The remaining columns give calculated values of 

the ratio using both the NBS and the RANNUM routines for the 

generation of Gaussian-distributed psuedo-random numbers. (See end of 

chapter for references.) The percent errors were computed as follows: 

 

percent error ={[(CALCULATED VALUE) - 

(THEORY)]/(THEORY)}*(100). 

 

An inspection of the table shows that the ratio of standard deviations 

(smedian/smean) is always greater for the odd sample sizes when compared to 

the adjacent even sample sizes. Figure 7.1 graphs the first two columns of 

Table 7.1. The greater magnitude of the ratio for odd sample sizes is 

apparent from the graph. By convention, the even sample size median is 

computed by averaging the two centermost values. This tends to 

“smooth” the median for the even sample sizes, thus reducing the 

variance and standard deviation as compared to the odd sample sizes, in 

which the center value is picked for the median, without benefit of 

smoothing. To take account of this difference, Hojo generated two 

separate equations, one for the odd-sample ratio and the other for the 

even-sample ratio. As stated above, the conventional method for 

computing the median of an even sample size is simply to compute the 

mean of the two centermost values. Hence, for a sample size of two, the 

computations of median and mean are the same, the ratio is unity and the 

percent errors are zero, as shown in the table. Figure 7.2 shows the 

percent errors for two different Gaussian random number generators 

used to compute the ratio of standard deviations. The theoretical values 

computed by Hojo are used as reference. As the graph shows, the errors 

are small, barely exceeding one percent. 



 

 

Computation of the Table 

Computations leading to Table 7.1 were as follows: for each sample 

size  N  from 2 through 12,  10,000 samples were generated using the 

NBS algorithm with mean of zero and standard deviation of unity. The 

ratios of standard deviation of median to standard deviation of mean 

were computed for each sample size. 

The ratios were compared to Hojo’s theoretical values and the percent 

errors computed. This process was repeated using the RANNUM routine 

to generate the Gaussian-distributed random numbers. The average error 

for the NBS samples is minus 0.177 percent, while that for the 

RANNUM-generated samples is +0.475 percent. These errors are quite 

small, and provide verification of the accuracy of Hojo’s work, which was 

calculated directly from mathematical principles. 

Practical Considerations 

The above discussion means that the observer spotting gunfire or 

other ordnance delivery in the field may use the median as a quick 

estimate of center of impact of the rounds, with little loss of accuracy.  
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NOTES AND REFERENCES FOR 
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The NBS algorithm for generating Gaussian-distributed random 

numbers is from pp. 952-953 of: 

Abramowitz, M., and Stegun, I. A., “Handbook of Mathematical 

Functions,” National Bureau of Standards, 1964. 

 

The mean and standard deviation of sample mean is given on p. 345 

of: 

Cramér, H., “Mathematical Methods of Statistics,” Princeton 

University Press, 1963. 

Hojo, T., “Distribution of the Median, Quartiles and Interquartile 

Distance in Samples from a Normal Population,” Biometrika, Vol. 23, 

pp. 315-363, (1931). 

 

The difference between the median of odd and even samples was 

emphasized by F. L. Weaver: 

Weaver, F. L., Naval Engineers Journal, pp. 153-156, July 1983. 

 

The RANNUM routine for generating Gaussian-random numbers 

was resident on the computer system at the Naval Ordnance Laboratory, 

White Oak, MD. That laboratory is now closed, and the fate of the 

software is unknown to the writer. 

  



 

 

CHAPTER  8 

NONPARAMETRIC STATISTICS AND 

APPLICATIONS 

 

Introduction 

Classical statistics considers various probability distributions and their 

parameters such as the mean, variance, and higher-order moments. In 

contrast, nonparametric statistics ignores those parameters, but yields a 

remarkable amount of information nevertheless. 

Quality of Manufacture 

S.S. Wilks considered the application of mathematical statistics to the 

practical problem of controlling quality of a manufactured product. For 

example, a given quality characteristic might be measured by a variable 

“X” where “X” might be the “blowing time” in seconds for a particular 

type of electrical fuse or the “breaking strength” of a sample of parachute 

cord. In testing the breaking strength of a sample of cord, for example, 

the results will reveal a range of values of breaking strengths. As a rule, 

high values of breaking strength are acceptable, and attention is given 

only to the minimum values. Wilks refers to this situation as the problem 

of “one tolerance limit.” In particular, an answer is desired to the 

question: “With what confidence ‘C’ may it be predicted that a given 

fraction ‘Rc’ of the population of breaking strengths will be greater than 

the measured minimum value ‘X’, from a sample of size ‘n’?” 

Wilks shows that the confidence “C” and the population fraction “Rc” 

are related to the sample size “n” by the definite integral equation: 

 

1n  _  x (n-1)dx  =  C  EQ.8.1 

Rc 

 

(editor’s note: this equation was unfortunately corrupted) 

 



 

 

where  x  is a “dummy” variable of integration. 

This equation integrates simply to: 

 

1 - (Rc)
n  =  C  EQ.8.2 

 

The relationship described by EQ. 8.2 is graphed in Figure 8.1. The 

figure shows that increases in sample size beyond about 300 does not 

return much increase in confidence. 

By transposing terms, taking logarithms to the base 10 and multiplying 

through by minus one, we have: 

 

-LG(1-C) = -LG(Rc)[n]  EQ.8.3 
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The multiplication by minus one is merely a convenience to allow the 

graph of EQ.8.3 to plot in the first quadrant. This linear equation is 

shown graphed in Figure 8.2, for a fixed fraction “Rc” equal to 0.99. 

Again, the larger sample sizes do not give much increase in confidence. 

This is as good a place as any for a consideration of the choice of a 

particular numerical value for “Rc.” If a relatively small value is chosen 

for Rc, then a substantial part of the population may have values which lie 

outside the range of the sample. Thus the sample range cannot represent, 

even approximately, the population. On the other hand, a fraction Rc 

which is too near unity will need an inordinately large sample size to give 

a confidence of 0.9 or greater, which is desired. In the work here, a 

fraction Rc equal to 0.99 is chosen as a compromise to give a reasonable 

confidence with sample sizes which are not too high. 

Table 8.1 gives the sample sizes needed to yield confidence levels of 

0.6, 0.8, 0.9, 0.95, and 0.99. The values of “n” have been rounded up to 

yield more convenient sample sizes. An example in the use of the table 

follows. 

Suppose that a sample from a production lot of parachute cord has 

been received from the manufacturer and must be tested to verify that 

the breaking strength is high enough. The minimum breaking strength is 

determined by the design load of the parachute. The test is performed by 

choosing a sample of “n” cords and subjecting each cord to a gradually 

increasing force or load, until the cord breaks. The test records provide 

the sample distribution of ultimate strengths. In this case, we want to 

know if 99 percent (Rc =0.99) of all cords which might be produced by 

this manufacturer will have breaking strengths of at least the minimum 

obtained in the test, with a confidence of 95 percent (C = 0.95). 

Referring to Table 8.1, at C equal to 0.95, n is 300. Hence a sample size 

of 300 cords must be tested. The above application rests upon the 

assumption that the manufacturing process remains “in control” and that 

the remaining variability of the product’s breaking strength may be 

considered to be random. 



 

 

Returning to Table 8.1, It is seen that the sample sizes required are 

fairly large. 

 

TABLE 8.1  SAMPLE SIZE  n  NEEDED TO GIVE CONFIDENCE  C  THAT  A FRACTION  

Rc  OF THE POPULATION WILL EXCEED A GIVEN REQUIREMENT 

 

C n 

0.6 92 

0.8 161 

0.9 230 

0.95 300 

0.99 460 

 

This is the price that is paid for the use of nonparametric statistics. At 

the outset, a cost analysis or estimate must be performed. If 

measurements must be repeated on many lots or batches of product, 

then one should study the product so as to fit a particular probability 

distribution to the variability of the data. In this way, a more efficient test 

may be devised which will have a smaller sample size and thus lower cost. 

On the other hand, if only a small number of lots are to be tested or if an 

answer is needed immediately and time is not available for theoretical 

studies, the use of nonparametric statistics may yield the needed 

information with minimum cost and delay. 

  



 

 

NOTES AND REFERENCES FOR 

CHAPTER 8 
 

The test described by Campbell on p. 71 of the reference below is not 

correct. The load must be gradually applied to the ultimate strength of 

the material, in order to discover the minimum breaking strength in the 

sample. 

 

Campbell, L. M., “Some Applications of Extreme-Value and Non-

Parametric Statistics to Naval Engineering,” Naval Engineers Journal, 

Vol. 89, No. 6, pp. 67-74, Washington D. C., December, 1977. 

 

Wilks, S. S., “Determination of Sample Sizes for Setting Tolerance 

Limits,” Annals Math. Stat., Vol. 12, pp. 91-96, (1941). 

 

Wilks, S. S., “Statistical Prediction with Special Reference to the 

Problem of Tolerance Limits,” Annals Math. Stat., Vol. 13, pp. 400-409, 

(1942). 

 

It has been said before, but bears repeating: any work by S. S. Wilks is 

worthy of study.  



 

 

CHAPTER  9 

NONPARAMETRIC STATISTICS CONTINUED 

AN APPLICATION TO DISPERSION IN 

EXTERIOR BALLISTICS 

 

Introduction 

In development and manufacture of small arms ammunition, the 

dispersion of rounds when fired at fixed range upon a vertical target is a 

good indication of quality of the ammunition. Many different measures 

of dispersion have been proposed and used. The most popular measure 

among rifle shooters is the “extreme spread.” This is the maximum 

distance between all possible pairs of bullet holes on the target. 
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Figure 9.1 shows how a typical target from a small arms range might 

appear. This particular target was made by a shooter firing a .45 caliber 

revolver at 25 yards range. Table 6.1 gives the measured data from which 

the figure is plotted. 

In Figure 9.1, the shots are numbered from left to right across the 

target. This is not the sequence in which the shots were fired, but were 

numbered to aid in the discussion. It is often possible to identify, simply 

by inspection, the pair of bullet holes which have the largest distance 

between, or extreme spread. In some cases, it is necessary to measure 

several candidates to identify the largest. In Figure 9.1, the spread 

between shots 3 and 5 appears to be the largest. On the actual target, one 

could simply measure the distance with a metal scale or tape measure. In 

a large shooting match, the measurement process might be automated 

with on-target sensors to report the coordinates of  

each round striking the target. In our case, we have the measured 

horizontal and vertical deviations in Table 6.1. Subtracting the x- and y-

coordinates of round 3 from the corresponding coordinates of round 5, 

we may compute: 

EXTREME SPREAD = [(X5-X3)
2 + (Y5-Y3)

2]1/2,or about 5.88 inches. 

As noted by Grubbs, a group of “N” projectile hits upon a target 

generates “n” possible spreads, each spread being the linear distance 

between each possible pair of points. That is, “N” points are chosen two 

at a time. This is known formally as the combinations of “N” things, two 

at a time, and can be expressed as follows: 

 

COMB(N;2) = (N!)/(2!)(N-2)! = n = N(N-1)/2  EQ.9.1 

 

where N! = (N)*(N-1)*(N-2)*...*(2)*(1). 

Substituting for “n” in EQ.7.2 yields: 

 

C = 1- (Rc)
N*(N-1)/2  

EQ.9.2 

 



 

 

Using EQ.9.2, Table 9.1 is computed, which gives the confidence “C” 

that the extreme spread measured across a group of “N” projectile hits 

will cover 99 percent (Rc = 0.99) of all possible groups fired under similar 

conditions. Notice that the confidence for small sample sizes is quite low, 

being only 36 percent for the commonly-used 10-shot group, but 

reaching 99 percent for a group of 31 shots. 

 

TABLE 9.1  CONFIDENCE C THAT EXTREME SPREAD OF GROUP OF N ROUNDS 

WILL COVER 99 PERCENT  (Rc = 0.99)  OF ALL GROUPS OF N ROUNDS FIRED UNDER 

SIMILAR CONDITIONS. 

 

N C   N C 

1 0   21 0.87883118 

2 0.01   22 0.90188623 

3 0.029701   23 0.921349 

4 0.05851985   24 0.93758145 

5 0.09561792   25 0.95095911 

6 0.13994165   26 0.96185495 

7 0.19027213   27 0.97062666 

8 0.24528071   28 0.97760745 

9 0.30358678   29 0.98309991 

10 0.36381451   30 0.98737272 

11 0.42464525   31 0.9906596 

12 0.48486288   32 0.99315999 

13 0.54339025   33 0.99504113 

14 0.59931535   34 0.99644087 

15 0.65190689   35 0.99747105 

16 0.70061961   36 0.99822101 

17 0.74509024   37 0.99876109 

18 0.78512555   38 0.99914583 

19 0.82068432   39 0.99941699 

20 0.85185501   40 0.99960604 

 

  



 

 

Some Examples in the Use of Table 9.1 

Although these examples are taken from small-arms ordnance, the 

techniques are believed to be applicable to any projectile-throwing or 

missile-delivering ordnance system. 

Example 1 

We wish to measure, with a confidence of 0.90, the ballistic dispersion 

of a particular rifle firing a certain production lot of ammunition. 

Referring to Table 9.1, a confidence of 0.90 corresponds most closely to 

a sample size of 22 shots. Hence, the test procedure is as follows: 

A group of 22 shots is fired upon a target and the resulting extreme 

spread is measured. Then 90 percent (C = 0.90) of all groups fired under 

similar conditions should measure less than or equal to the measured 

value of extreme spread. 

Example 2 

The accuracy of a particular production lot of ammunition must be 

determined, with a high confidence (say 99 percent) of being correct. 

From Table 9.1, a confidence of 0.99 requires a sample size or group of 

31 shots. After having fired the 31-shot group and having measured the 

extreme spread, we may expect that 99 percent of all groups (C = 0.99) 

fired under similar conditions will have extreme spreads of less than or 

equal to the measured value. 

Example 3 

The dispersion of a particular lot of ammunition must be determined, 

using existing records. The records reveal that a 15-shot group was fired, 

yielding an extreme spread of 4 inches at a range of 100 yards. From 

Table 9.1, at N = 15, the confidence is 0.65. Thus we have our answer of 

4 inches for the extreme spread, but at the relatively low confidence level 

of 65 percent. Our confidence in the measurement is limited by the 

relatively small 15-shot sample size. 

The reader will notice that these last three examples are concerned 

with the upper tolerance limit (the maximum dispersion), whereas the 

example of the previous chapter dealt with the lower tolerance limit 



 

 

(minimum breaking strength). The extension of the method is based 

upon Wilks' statement that the problem of an upper tolerance limit is 

entirely similar to that of a lower tolerance limit. 

A comparison of the confidence levels predicted by Table 9.1 with 

actual practice is illuminating. George L. Jacobsen, former Assistant 

Superintendent of Frankford Arsenal, states that for accuracy testing of 

small arms ammunition, a sample of at least 30 rounds is needed. This 

corresponds to a confidence of 0.987, which is not unreasonable for 

accuracy research. A second indication of the essential correctness of 

Table 9.1 is provided by the experience of workers at the U.S. Army 

Ballistics Research Laboratory during World War Two. In tests of the 

dispersion of 0.50 caliber aircraft machine guns, many groups of 20 shots 

each were fired. Table 9.1 indicates a confidence of 0.85 that the extreme 

spread of each group fired would cover 99 percent (Rc = 0.99) of the 

corresponding population of spreads. The 20-shot group is a reasonable 

compromise between confidence needed and time available for the test.   
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CHAPTER 10 

STURGES’ RULE FOR DATA PLOTTING. 

 

Introduction 

In the study of observed and measured data, one often assigns a 

number to a particular physical quantity. One of the graphical tools 

developed for presenting and clarifying masses of numerical data is the 

histogram. Most elementary texts on statistics introduce the histogram 

and give procedures for plotting. We may think of the process as sorting 

objects by size into various “bins.” In the case of statistical analysis, 

usually we are sorting numerical values rather than physical objects. 

Upper and lower numerical limits are determined for each bin, and the 

data values which lie between the limits are placed in the bin. The result 

is a tally or count of the total number of data values in each bin, and is 

plotted as tally versus bin location. 

A note on the terms used 

The discussion here uses the term “bin” to describe the numerical 

interval into which the data values are sorted. The term “bin” seems to 

have been introduced with applications of statistics to signal processing 

and especially to the detection of very small (low-power) signals. Earlier 

writers used the word “cell” to mean the same thing as bin. And still 

earlier in this century, writers referred to the “class interval” when 

constructing a histogram. As observed by E. Bright Wilson (see 

references at end of chapter), a simple numerical measurement is in a 

sense a sorting of data into classes. Thus the earlier writers were on good 

ground when using the term “class interval.” In this work, the writer shall 

conform to current word usage of bin. 

Example 



 

 

The graph of Figure 12.2 includes a plot of the mean horizontal 

positions of 32 three-shot groups. A useful method for gaining insight 

into the phenomenon under study is to plot the data as a histogram. This 

is done in Figure 10.1, using six bins. Inspection of Figure 10.1 reveals 

that the data is not distributed symmetrically, as one might expect in 

sampling from a normal distribution. The “X-mean” values are mostly 

negative, 21 as against 11 positive values. But we might equally as well 

have chosen three bins, as in Figure 10.2. Now here, the negative bias is 

still apparent, but the finer structure of the distribution of the sample 

values has been lost. For example, the single value lying at the top of the 

range in Figure 10.1 is not visible in the histogram of Figure 10.2 with 

only three bins. A plot using 12 bins, as in Figure 10.3, shows more detail 

but has two empty bins which is somewhat bothersome, indicating that 

the data are perhaps being “stretched” too far. 

Very well, six bins seems about right, but how do we know what 

number of bins to choose? A quick way is to refer to Table 10.1, which 

gives a recommended number of bins for a given sample size. 
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TABLE 10.1  RECOMMENDED QUANTITY OF BINS 

 (k)  FOR SAMPLE SIZE (N). 

 

N k 

24-45 6 

46-91 7 

92-181 8 

182-362 9 

363-725 10 

726-1448 11 

1449-2896 12 

 

Experience has shown that histograms with less than five or six bins 

are of limited usefulness, so the table is not extended to lower values. At 

the higher end of the table, 12 bins will suffice for nearly 2900 datum 

points, which should accommodate most applications. 

Development of the Table 

The following is a discussion of the development of Table 10.1. A 

knowledge of the development is not necessary for use of the table, but 

gives some insight into how and why the histogram is so very useful. 

Herbert A. Sturges (reference at end of chapter) considered a practical 

problem which arises when plotting a histogram of numerical values 

from a statistical sample of size N having range R, the range being 

defined as the largest value minus the smallest value. Sturges wished to 

estimate the optimum class interval for the histogram. (Today the class 

interval is known as the cell width or bin width.) Sturges gave the 

following equation for estimating the class interval: 

 

C = R/[1 + 3.322LG10(N)]  EQ.10.1 

 

Where C is the optimal class interval (cell width or bin width) R is the 

range (largest value minus smallest value) N is the sample size (number 

of items in the sample) LG10 is the logarithm to the base 10 (common 

logarithm). 

 



 

 

Sturges did not provide an explanation of how the equation was 

developed except to hint that it is based on a series of binomial 

coefficients. The following exposition of the likely development of 

Sturges’ rule is from G.J. Bradley. 

Given the binomial expansion of (q+p)m: Where p is the probability 

of success in a single trial.  

q is 1-p (= probability of failure) 

m is the number of trials 

 

For  m  going from 0 to 4 

0 1 

1 q+p 

2 q2+2qp+p2 

3 q3+3q2p+3qp2+p3 

4 q4+4q3p+6q2p2+4qp3+p4 

 

If now we set down only the numerical coefficient of each term 

above, we have (Pascal’s triangle): 

 

m  numerical coefficients 

 
    1      
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Note that the number of coefficients is always m+1 and that the sum 

of the coefficients is 2m. 

A useful application of Pascal’s triangle is to give the frequency 

distribution of the combinations expected in m repeated trials of an 

event. For example, m = 4 corresponds to the outcome of tossing four 

coins. A simple enumeration of the possible outcomes of the toss will 

show: 

 



 

 

number of heads number of ways to obtain 

0 1 

1 4 

2 6 

3 4 

4 1 

 

This result is given by the m = 4 row of Pascal’s triangle. As 

previously stated, there are (m+1) terms having (1+1)m or 2m possible 

combinations. 

A graph of the m = 4 line from Pascal’s triangle is given in Figure 

10.4. This may be thought of as the possible results of tossing four coins. 

The coins are assumed to be fair; that is, the probability of heads is 0.5 as 

is the probability of tails. As Figure 10.4 shows, 0,1,2,3, or 4 heads can 

occur in 1,4,6,4,1 possible ways, respectively. 

Now if a random sample of 16 elements (sample size = 16) is drawn 

from a symmetrical unimodal parent population, we should expect that 

the histogram of the sample should have the general form or shape as 

shown in Figure 10.4. The maximum of the histogram should occur near 

the central value of the population, and the dispersion of the sample will 

be determined by the dispersion of the parent population.   
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This suggests that Pascal’s triangle (the binomial coefficients) might 

be used as a guide in plotting histograms. More specifically, consider a 

sample of size N which is to be plotted as a histogram with k bins. Each 

one of the N items is to be placed into one of the bins. By analogy with 

Figure 10.4, the number of bins  k  corresponds to the several classes of 

events (in Figure 10.4, the number of heads), which is (m + 1). Similarly, 

the sample size N corresponds to the total number of possible 

combinations, which is 2m. That is 2m = N. 

Using logarithms to the base 10 

 

mLG10(2) = LG10(N) 

so 

m = [LG10(N)]/LG10(2) 

 

Now let  m+1 = k  where k is the number of terms. That is,  k  

corresponds to the number of possible outcomes of the toss. Thus if  m 

= 4,  k = 5, and the five possible outcomes are 0,1,2,3, or 4 heads. Then 

 

k = 1+ [LG10(N)]/LG10(2) 

or 

k = 1 + [LG10(N)]/(0.301030) 

and 

k = 1 + 3.32193(LG10(N)) 

  



 

 

Now if a statistical sample of size N with range R is plotted as a 

histogram with  k  equally sized classes (cells or bins), then the class 

interval (cell width or bin width)  C  is 

 

C = R/k 

By substitution in this equation 

C = R/{1 + 3.322[LG10(N)]} 

 

which is Sturges’ rule. 

Histogram plotting via Sturges’ rule is an excellent analytical tool in 

itself. This writer has used Sturges’ rule plotting in studying the extreme-

value distribution of projectile dispersion. But it seems that an important 

property of Sturges’ rule plotting is not fully appreciated: Sturges’rule 

plotting is a symmetry test. The symmetry (or asymmetry) of a probability 

distribution is a property of fundamental importance. It is a prime 

characteristic to look for when attempting to identify the underlying 

population distribution from a study of a sample drawn from that 

population. Since Sturges’ rule is based upon the perfect symmetry of the 

binomial coefficients, it provides a “symmetry yardstick” or benchmark 

against which to measure the symmetry (or asymmetry) of the sample. 

Although Sturges’ rule plotting is useful, it is not very sensitive. That 

is, it is not applicable to small samples. Experience has shown that it is 

necessary to plot at least six cells in order to begin to see asymmetry in 

the sample. However, Sturges’ rule is not rigid. It is only a guide to 

rational plotting of data. 

Computation of Table 10.1 

Table 10.1 is computed by taking the nearest integer to 

 

N = 2(m-.5) 

for the lower limit and 

N = 2(m+.5) 

for the upper limit. For example, if k = 6 (six bins), m =5 and 



 

 

 

2(4.5)  =22.6  (lower limit = 23) 

and 

2(5.5) = 45.25  (upper limit = 45). 

 

For  k = 7, the lower limit is computed by adding 1 to the upper limit 

for  k = 6, which gives 46. The upper limit for k = 7 is computed as 

before, yielding 91. The other bin limits are developed in a similar 

manner. A similar table (Table 22-5) may be found in “The Quality 

Control Handbook.” The use of either table will result in more 

satisfactory histogram plots. 
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Sturges’ paper is found on pp. 65-66 of: 

Sturges, H. A., “The Choice of a Class Interval,” American Statistical 

Association Journal, March 1926. 

 

The exposition of the development of Sturges’ rule is contained in a 

letter from G. J. Bradley to James R. King, letter dated September 7, 

1978. Mr.Bradley is now deceased. The development in this chapter is 

published with the kind permission of Mr. King. 

 

The concept of measurement as a classification is from Sec. 7.7 of: 

Wilson, E. B., Jr., “An Introduction to Scientific Research,” McGraw-

Hill, 1952. 

  



 

 

CHAPTER  11 

EXTREME-VALUE STATISTICS APPLIED TO 

THE EXTREME SPREAD IN BALLISTIC 

DISPERSION. 

 

Introduction 

In exterior ballistics, the dispersion of rounds about the average 

trajectory is a characteristic of great importance. Frank Grubbs considers 

the various measures of dispersion in his monograph (see references at 

end of chapter). Grubbs discusses eight different measures of dispersion. 

One measure of dispersion much used by shooters is the extreme spread, 

defined as the maximum distance between all possible pairs of bullet 

holes. As discussed in Chapter 9, in selecting pairs of points from a 

group of N points, we are selecting combinations of two things from a 

group of N things. In this case, the total number of such combinations is 

given by EQ. 9.1, repeated here: 

 

COMB(N;2) = (N!)/(2!)(N-2)! = n = N(N-1)/2 EQ.11.1 

 

where N! = (N)*(N-1)*(N-2)*...*(2)*(1). 

 

A group of ten rounds would give a total of 45 extreme spreads. By 

convention, the maximum of the extreme spreads would be selected as a 

measure of dispersion of the group of rounds. 

Figure 11.1 is plotted from the data of Table 6.1 and illustrates the 

extreme spread of a ten-round group of shots. The aiming point is at the 

crossing of the axes. The center of the group is about three inches above 

and one-half inch to the right of the aiming point. The straight line 

labeled as ‘Extreme Spread’ shows the maximum distance between any 

two impact points, bullet holes in this case. On a particular small arms 

target, the extreme spread may be apparent. Occasionally, two or more 



 

 

spreads may be near in magnitude, and several measurements must be 

made to determine which is the largest. 

In naval gunfire support, we would consider the extreme spread of the 

fall of shot. Artillery fire controllers might look to the extreme spread of 

the pattern of impact points of rounds. Evaluators of air or missile strikes 

would view the extreme spread of bomb, rocket, or missile impacts. In all 

these cases, the interest in and the mathematics needed to deal with the 

phenomena are the same. 

In studying the statistics of ballistic dispersion, the writer fired upon 

44 targets while shooting upon a small-arms range. Table  11.1 gives the 

data of interest.  
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TABLE 11.1  MEASURED EXTREME SPREADS FROM FORTY FOUR TARGETS 
    

E.S. E.S. E.S. E.S. 
3.81 5.75 6.84 8.12 
3.91 5.84 6.88 9.12 
4.06 5.88 7 9.84 
4.09 5.97 7.09 10.41 
4.34 5.97 7.12 10.44 
4.88 6.12 7.25 10.59 
5 6.22 7.28 10.81 
5 6.41 7.28 12.06 
5.12 6.44 7.38 12.09 
5.12 6.56 7.5 12.31 
5.25 6.84 8 16.56 

 
NOTES: 

(1)   FIREARM USED:  22 CALIBER REVOLVER. 

(2)   AMMUNITION:  COMMERCIAL 22 LONG RIFLE CARTRIDGES, STANDARD VELOCITY. 

(3)   TEN ROUNDS FIRED ON EACH TARGET. 

(4)   RANGE:  25  YARDS. 

(5)   EXTREME SPREAD IN INCHES MEASURED ON TARGET PLANE.   



 

 

A Search for the Probability Distribution of the Extreme Spread 

As shown in Figure 11.1, the extreme spread is the largest of all the 

possible spreads which may be measured upon a given target or group of 

impact points of rounds. The extreme spread is one of several available 

measures of dispersion. Since the extreme spread is determined by the 

impact positions of the rounds, which positions are themselves random 

variates, the extreme spreads are also random variates. 

In analyzing test or field data, the analyst is well advised to identify the 

probability distribution of the random portion of the measured data from 

the phenomenon under study. A knowledge of the underlying probability 

distribution will sharpen the analysis, reveal answers to questions of 

interest, suggest fruitful areas for investigation and also enable one to 

make rational predictions of performance of systems under examination. 

With identification of the probability distribution as our goal, let us 

return to study our data. 

Histogram Plot 

As a first step in studying the measured data, the 44 extreme spreads 

were plotted in a histogram. Sturges’ rule was consulted for the number 

of bins for the histogram. As Table 10.1 indicates, six bins is 

recommended for a sample size of 44. Since the rule is a guide and not a 

law, seven bins were used, as seven seemed to better reveal the structure 

of the distribution of data. 

Still not satisfied with the plot, the common logarithms of the data 

were plotted in a histogram, which is shown in Figure 11.2. The most 

striking characteristics of this histogram are the strong central tendency 

as shown by the tall bin near the center; and the right-hand skew. 

Both characteristics suggest that either a log-normal or an extreme-

value plot might best fit the data. This may be made more clear by 

comparing Figure 11.2, the histogram plot, with Figure 11.3, which is a 

graph of the extreme-value probability density function. A discussion of 

the extreme-value probability function is given later in this chapter. For 

now, the important thing is to see the general similarity in shape between 



 

 

the histogram of Figure 11.2 and the probability density function of 

Figure 11.3.The histogram displays the skewed distribution of values 

characteristic of extreme-value phenomena. The right-hand skew of the 

histogram indicates that the extremes are of large values. A skew of the 

histogram to the left would indicate that the smaller values are 

increasingly more rare. 

Figure 11.3 is a graph of the extreme-value probability density 

function. This function describes the probability distribution of the 

extremes of many different kinds of random variates. The extremes 

referred to are the largest values of the variate which are observed in a 

group of samples of that variate. As an example, the floods of rivers and 

streams illustrate the extremes of a physical phenomenon, as the floods 

are the largest of the flows. The flow of a particular river is observed 

each day, which results in a sample size of 365 observations in a typical 

year. The largest flow in a given year is chosen to represent the flood for 

that year. This largest flow is of course the extreme of the given sample 

which was recorded for a particular year. Gumbel proposed that the 

extreme-value probability distribution be used to describe flood flows. 

Clearly the flood flows are random variates and certainly are examples of 

the extremes of phenomena. 

In the following, the mathematical development of the extreme-value 

distribution is sketched. A brief description of the construction of the 

extreme-value probability plot is given. For details, the reader is urged to 

consult the books and papers by J. R. King and E. J. Gumbel. The data 

of table 11.1 are plotted in Figure 11.4 to test the possibility that the 

extreme spread in ballistic dispersion obeys the extreme-value probability 

distribution. 
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The equation used by Gumbel to describe the probability density 

function of the extremes is: 

 

phi(y) or f(y) = EXP[ -y-EXP(-y)]   EQ. 11.1 

 

where  -_<y<+_. 

 

The reduced variate “y” is given by: 

 

y = a(x-u)  EQ.11.2 

 

where a is a scale parameter and u is a location parameter, both 

computed from the data, as discussed later. The parameter u is the most 

probable value of the variate. The reciprocal of  a is the slope of the 

theoretical straight line on an extreme-value probability plot. For the 

theoretical extreme-value probability density function of EQ.11.1, the 

most probable value is the maximum, which occurs at y = 0. Hence the 

theoretically most probable value of x is u , for which the probability is 

1/e = 0.367879... 

Extreme-Value Plot 

The data were plotted on both log-normal and extreme-value 

probability graphs. The best fit was given by the extreme-value plot, as 

shown in Figure 11.4. 

The abscissa in Figure 11.4 is the cumulative extreme-value 

probability distribution, given by integrating EQ.11.1 from minus infinity 

to y, and is: 

 

F(y) = EXP(-EXP(-y))  EQ.11.3 

 

where y is given by EQ.11.2, as before. 

Extreme-value probability plots are sometimes confusing to those 

unfamiliar with them. In early applications, the variate was termed “x,” 



 

 

and was plotted as the ordinate. The reduced variate “y” was plotted as 

the abscissa. This is the reverse of our usual convention with cartesian-

coordinate graphing, and takes some getting used to. The reduced variate 

y sometimes is plotted beneath the cumulative probability scale as an 

additional abscissa scale. This y scale is used primarily in constructing the 

graphs. 

Figure 11.4 , in which the logarithm of the variate fits the extreme-

value distribution, is an example of Gumbel Type II extreme-value 

behavior. The theoretical line in Figure 11.4 is given by: 

 

x = (1/a)*(y) + u  EQ.11.4 

 

where   

 

(1/a) = (STD. DEV.)/sN  EQ.11.5 

 

and        

 

u = (MEAN) - (yN)/a  EQ. 11.6 

  



 

 

  

1.4  

1.2  

1.0  

0.8  

0.6  

0.10 0.40 0.60 0.80 0.90 0.95 0.98 0.99

5 

10

15

20

25

30

CUMUL A TIV E  P ROB A BIL IT Y ,  P

  E X T RE ME  S P RE A D  

  T HE ORET ICA L LINE   

  UP P E R L IMIT  

  L OWE R LIMIT  

 FIGURE  11 .4  E X T RE ME  V A LUE  P L OT OF E X T RE ME  SP RE A DS 



 

 

The standard deviation and mean in EQ.11.5 and EQ.11.6 above are 

computed from the data. The factors sN and yN are given in a table by 

Gumbel and Carlson. For our sample size of 44, sN equals 1.1499, and 

yN equals 0.5458 

Common logarithms of magnitudes of the extreme spreads were 

plotted using the left-hand ordinate scale. The data values are ranked in 

order of increasing size, and the plotting position on the probability 

abscissa computed from 

 

pi = (i- 0.44)/(n + 0.12)  EQ. 11.7 

 

where i is the index number of rank of a particular value.Thus the 

smallest of the extremes has rank 1, the next larger has rank 2, and so on 

to the largest of the extremes, which has rank n, where n is the sample 

size. In our case, n equals 44. This equation for computing the 

probability plotting position is from page 51 of J. R. Kings’s book 

“Frugal Sampling Schemes.” 

The fit is good, with most points within the one-sigma limits shown. 

Evaluation Dispersion from the Extreme-Value Plot 

The computed theoretical line from EQ.11.4 is shown in Figure 11.4. 

The theoretical line gives the probability corresponding to a given 

extreme spread. For example, reading the right-hand scale at 15 inches, 

the corresponding probability is about 0.95. Hence the probability is 

about 0.95 that a 10-round group fired under similar conditions will show 

an extreme spread of 15 inches or less. Similarly, the probability is 0.99 

that no 10-round group will exceed 23 inches extreme spread, under 

similar firing conditions. The median probability of 0.50 could be used as 

a measure of ammunition production quality when lot test samples are 

fired under controlled conditions. For the data considered here, the 

median value of extreme spread corresponding to the cumulative 

probability of 0.50 is about 6 inches. Many other numerical estimates may 

be made from the graph. For example, an extreme spread of 5 or less 



 

 

inches has a probability of occurrence of about 0.12. As previously noted, 

an extreme spread of 15 inches corresponds to a cumulative probability 

of 0.95. The probability that the extreme spread in a given test will lie 

between 5 and 15 inches is the difference between these probabilities, 

0.95 minus 0.12, or 0.83. This prediction will be correct so long as 

ammunition quality and test conditions remain the same. 

Evaluating the Goodness of Fit of the Plot to the Data 

The upper and lower one-sigma limits are used in Figure 11.4 to verify 

the goodness of fit. Values for the curves are computed from a table of 

factors, also given by Gumbel and Carlson. Gumbel considers the data 

values which lie along probabilities in the interval 0.15 < F < 0.85. Data 

values along that interval are normally distributed about their mean, 

which is the straight line in the graph. For the normal distribution, plus 

and minus one sigma encloses 0.68 of the area under the normal curve, 

which is the probability that a variate will lie within one standard 

deviation of the mean. The probability that a given data point might lie 

outside the one-sigma curves is thus about 0.32, or roughly one chance in 

three. The most extreme of the extremes are not normally distributed, 

and Gumbel makes special provisions to calculate the control curves for 

the three largest data values. If, after the plot is made, the analyst sees 

that the great majority of data points lie within one-sigma limits, the “fit” 

may be said to be “good.” This is a judgment call by the analyst. 

Formulas and residuals may be used to refine the decision. 

Additional Procedures for Plotting and Analysis 

The development of extreme-value and many other types of 

probability plotting has been greatly extended by James R. King in the 

references given at the end of this chapter. 

  



 

 

NOTES AND REFERENCES FOR 

CHAPTER  11 
 

Grubbs, F. E., Statistical Measures of Accuracy for Riflemen and 

Missile Engineers, 1964. 

 

The tables used for plotting Figure 11.4 are found in: 

Gumbel, E. J., and Carlson, P. G. , “Extreme Values in Aeronautics,” 

Journal of the Aeronautical Sciences, Vol. 21, No. 6, pp. 389-398, June, 

1954. 

See also: 

Gumbel, E. J., “Statistics of Extremes,” Columbia University Press, 

NY 1958. 

 

The most efficient methods for probability plotting are given by King 

in: 

King, J. R., “Probability Charts for Decision Making,” Industrial 

Press, Inc., NY, 1971. 

Chapters 11, 12, and 13 cover extreme-value plotting. 

 

See also: 

King, J. R., “Frugal Sampling Schemes,” Technical and Engineering 

Aids for Management, Tamworth, NH, 1980. 

Appendix C discusses extreme- value plotting. Anyone performing 

statistical analysis should have this book. 

  



 

 

CHAPTER  12 

AN INVESTIGATION OF HUMAN VISION IN 

THE ESTIMATION OF POSITION 

 

Introduction 

This investigation was prompted by a remark made by a senior U.S. 

Navy aviator. This pilot had much experience in making air searches of 

large ocean areas. He was quite familiar with all the varied types of 

electronic equipment for detecting ships and submarines, but insisted 

that the instrument which he called the “MARK I eyeball” was not fully 

appreciated. He said that the information to be gained by simply flying 

over the ocean and looking around is truly remarkable. 

Human Factors 

Much improvement in operations of systems of any kind may be 

obtained by study of the interface between the human operator and the 

equipment being operated. This area comes under the general heading of 

“human factors.” The writer is not an expert in this field, but made the 

investigation discussed here to illustrate the application of statistical 

methods to a psychovisual study. 

The Experiment 

This chapter discusses a simple experiment which was performed to 

investigate the ability of human vision to estimate the center of impact of 

a group of rounds. This is an important procedure in adjusting the sights 

of a small arm or other direct-fire weapon. Typically, on a rifle range, the 

rifle coach will have the shooter fire two or three rounds at the target to 

obtain an estimate of where the rifle is shooting. The shooter is told to 

aim at a particular point on the target, usually the bottom (“six-o’clock 

hold”) of the bullseye. The rifle coach observes the strike of the rounds 

on the target and then recommends the necessary sight adjustments to 

bring subsequent shots to the center of the target. It would appear that 

the coach is in some way estimating the center of the group, or center of 



 

 

impact of the rounds. An experiment was developed to investigate the 

accuracy and dispersion of these visual estimates. 

A Sketch of the Experiment 

One hundred and ninety-two numbers were generated by a psuedo-

random number generator. The numbers have a normal (Gaussian) 

distribution with zero mean and standard deviation of 1.0. These 

numbers were grouped into pairs, thus defining the x-y coordinates of 96 

points. The points were divided into groups of three and each group 

plotted on a one-tenth-inch grid. Each number was rounded to one 

decimal place to fit the grid. This process yielded 32 graphs, similar to 

Figure 12.1. 

An “eyeball estimate” of the center of each group of three shots was 

made and marked on each graph, as shown on Figure 12.1. The x-y 

coordinates of each estimate of center of each group is given by 

Table12.1. 
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TABLE  12.1  COORDINATES OF ESTIMATES OF CENTERS OF GROUP 

 

TARGET NO. X Y  TARGET NO. X Y 

1 -0.7 0.3  17 0.4 -0.6 

2 -0.3 -0.1  18 0.1 -0.3 

3 -0.4 0.2  19 -0.5 -0.2 

4 -0.3 -0.7  20 -0.3 -0.6 

5 -0.1 -0.7  21 0.2 0.7 

6 -0.6 0.2  22 0.3 -0.3 

7 0.2 -0.1  23 0.1 -0.6 

8 -0.3 0.7  24 -0.6 0.1 

9 -0.6 -0.4  25 0.5 0.6 

10 0.1 0.2  26 -0.1 -0.3 

11 0.6 -0.2  27 -0.3 0.1 

12 -0.5 -0.1  28 0.3 0.3 

13 0.2 -0.4  29 -0.6 -0.1 

14 0.4 0.5  30 -0.6 -0.1 

15 -0.7 -0.1  31 0.6 -0.2 

16 -0.1 -0.3  32 0.1 0.4 

 

In addition, the mean horizontal (X) position and the mean vertical 

(Y) position was calculated for each of the 32 groups of three shots. 

Figure 12.2 shows the mean (X) and “eyeball estimate” (X) plotted versus 

group number, the groups being numbered from zero to 31. Figure 12.3 

shows a similar plot for the mean (Y) and eye (Y) estimates. As may be 

seen from the plots, there is little to choose between the mean and the 

eye estimates. That is, for this small sample size, the human eye does very 

well at estimating the center of impact or group center. 

A measure of performance to be considered is the dispersion of the 

calculated mean versus the dispersion of the estimates group centers. The 

comparison is made in Table 12.2. 

  



 

 

TABLE  12.2  STANDARD DEVIATIONS OF GROUP MEANS AND VISUALLY-

ESTIMATED GROUP CENTERS FOR THIRTY-TWO GROUPS OF THREE ROUNDS 

EACH. 

 

GROUP MEAN(X) EYE(X) MEAN(Y) EYE(Y) 

0 -0.7 -0.7 0.3 0.3 

1 -0.36667 -0.3 -0.03333 -0.1 

2 -0.53333 -0.4 0.5 0.2 

3 -0.36667 -0.3 -0.43333 -0.7 

4 -0.1 -0.1 -0.63333 -0.7 

5 -0.6 -0.6 0.166667 0.2 

6 0.7 0.2 -0.6 -0.1 

7 -0.43333 -0.3 0.666667 0.7 

8 -0.53333 -0.6 -0.36667 -0.4 

9 0.033333 0.1 0.266667 0.2 

10 0.466667 0.6 -0.23333 -0.2 

11 -0.16667 -0.5 -0.06667 -0.1 

12 -0.03333 0.2 -0.33333 -0.4 

13 0.333333 0.4 0.466667 0.5 

14 -0.73333 -0.7 0 -0.1 

15 -0.1 -0.1 -0.36667 -0.3 

16 0.333333 0.4 -0.53333 -0.6 

17 -0.2 0.1 -0.36667 -0.3 

18 -0.53333 -0.5 -0.1 -0.2 

19 -0.3 -0.3 -0.6 -0.6 

20 0.266667 0.2 0.7 0.7 

21 0.266667 0.3 -0.43333 -0.3 

22 0 0.1 -0.53333 -0.6 

23 -0.6 -0.6 0.033333 0.1 

24 0.333333 0.5 0.466667 0.6 

25 -0.06667 -0.1 -0.16667 -0.3 

26 -0.33333 -0.3 -0.03333 0.1 

27 0.266667 0.3 0.333333 0.3 

28 -0.53333 -0.6 -0.06667 -0.1 

29 -0.66667 -0.6 -0.13333 -0.1 

30 0.466667 0.6 -0.2 -0.2 



 

 

31 0.066667 0.1 0.5 0.4 

     

 MEAN(X) EYE(X) MEAN(Y) EYE(Y) 

STDEV 0.400122 0.408269 0.39379 0.395629 

  



 

 

As may be seen from Table 12.2, there appears little significant 

difference between the estimates of group center provided by the human 

eye and the mean calculated from the coordinates of each round’s impact 

point. 
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This result should bolster the confidence of those charged with 

adjusting the sights of direct-fire weapons in the field. It appears that a 

simple visual estimate of group center of impact is as reliable as more 

complicated numerical calculations, at least for small numbers of rounds 

(small sample sizes). 

A reference at the end of this chapter discusses a different 

psychovisual study. 

  



 

 

NOTES AND REFERENCES FOR 

CHAPTER  12 
 

Cleveland, W. S., Harris, C. S., and McGill, R., “Judgments of Circle 

Sizes on Statistical Maps,” Journal of the American Statistical 

Association, Vol. 77, No. 379, Applications Section, September 1982. 

 

A note on quantization noise. In arbitrarily plotting the estimated 

group center coordinates on a one-tenth-inch grid, a quantization error 

of 0.1/(12)1/2 is introduced. This is 0.1/3.464 = 0.02887 of root-mean-

square quantization noise affecting each estimated coordinate value. This 

appears too small to have any significant effect. See pp. 327-329 of: 

Schwartz, M., “Information Transmission, Modulation, and Noise,” 

McGraw-Hill, 1959. 

  



 

 

GLOSSARY 
 

Abscissa: In plane Cartesian coordinates, the x-axis. 

Accuracy: Refers to the amount of error to be expected at the target. 

An accurate device or measurement system has a small error. 

Adjustment (of fire): The process of correcting the aiming of the gun 

or battery to cause the rounds to strike the target. 

Ammunition: The projectile, including its propellant, warhead or 

bursting charge, cartridge case, primer and fuze. Term also includes 

aircraft bombs, rockets and missiles of all types, as well as  grenades 

and mines. 

Artillery: Originally meant an implement of war, especially a military 

engine for throwing missiles. Use now generally limited to guns, 

howitzers, mortars and rockets in land warfare. 

Ball: A type of bullet found in small arms ammunition. In early gun 

designs, the bullet was spherically shaped, hence the name ‘ball’. In 

current designs, the bullet is elongated with a sharp or rounded point to 

reduce air resistance. Today, ‘ball ammunition’ means ordinary rifle, 

pistol or machine gun ammunition for use by infantry. The term is used 

to distinguish that ammunition from other types of ammunition such as 

armor piercing, incendiary, or tracer. 

Ballistics: The study of the motion of projectiles of all types. Term 

comes from a Greek word meaning “to throw.” The subject is further 

subdivided into interior, exterior, launch, and terminal ballistics. 

Battery: A group of guns controlled and directed to bring the fire of 

all upon a given target or area. Formerly, in naval usage, all guns of a 

given caliber mounted upon a particular ship. Thus: the main battery of 

the battleship Alabama consists of nine sixteen-inch -45 caliber rifles. 

Bias (in standard deviation): The method commonly used to calculate 

the standard deviation of a set of numbers is biased. This bias may be 



 

 

corrected if it is known that the sample is properly drawn from a 

population having a normal probability density distribution. 

Bin: A subdivision of the range of a numerical sample of data. 

Generally all bins are the same width. See histogram. 

Bivariate normal probability density function: A two dimensional 

probability density function, usually represented as a surface above the x-

y plane. In general, the standard deviations of x and y are unequal. Also, 

the means of x and y are not equal. 

Bivariate probability density function: A probability function in 

which the probability depends upon the values taken on by two distinct 

random variates. 

Bullet: Projectile for small arm ammunition. Derived from French 

‘boule’ for ball. Word is often used colloquially by non-professionals to 

mean cartridge. 

Caliber: Diameter of gun bore. Thus: the U.S. Navy 5-inch gun has a 

bore diameter slightly smaller than the Soviet’s 130 millimeter gun (127 

millimeters versus 130 millimeters).Also used as a measure of length of 

gun tube. A 5-inch/54-caliber gun has a barrel length of 54 multiplied by 

5 or 270 inches. 

Cannon: A gun so large as to require a mount. Word perhaps derived 

from the Italian word for tube. Today, used in the term ‘automatic 

cannon’ such as the large-bore machine guns in aircraft and on ship and 

ground air defense systems. 

Cannon-cocker: Artilleryman, in U.S. Marine Corps slang. 

Cartridge: The unit of small arm ammunition, comprised of a tubular 

case which encloses a charge of propellant and is sealed on one end with 

a with a primer and at the other end with a bullet. 

Cell: Name formerly used to mean what is today called ‘bin’.See 

histogram. 

Central tendency: The characteristic of a random variate that it 

clusters near a central point or value. A uniformly distributed variate has 

no central tendency. Normally-distributed variates tend to cluster toward 



 

 

the mean. Common measures of central tendency are the mean and 

median. 

CEP: Circular error probable, which see. 

Circular Error Probable: Usually referred to as CEP, although 

sometimes written as CPE. The radius of the circle on the x-y plane of 

the circular normal probability plot which encloses one-half of the 

variates. The same definition may be applied to a bivariate distribution in 

which the standard deviations are unequal,  although the calculation 

may be more difficult. 

Circular Normal Probability Density: A particular case of the 

bivariate normal probability density function in which the two standard 

deviations are equal. 

Class interval: Name formerly used to mean what is today called bin 

or cell. Subdivision of range of sample of numerical data. See histogram. 

Coriolis: Apparent deflection of a round as seen by an observer on 

the earth. The effect is caused by the rotation of the earth. 

Confidence (or confidence level): A numerical estimate of the 

probability that a variate might lie within given limits, or above or below 

a given limit. 

Cordite: A smokeless powder formerly used by the British as a 

propellant charge in small arm and some cannon ammunition. It is 

seldom encountered today. The word is used by journalists to refer to the 

odor found in the vicinity of a high explosive detonation. Whatever the 

journalist may smell, it is not likely to be cordite. 

CPE: Circular probable error: Has same meaning as CEP, which see. 

Cumulative Probability Function: A mathematical function or 

graph which describes the probability of occurrence of a variate of a 

particular magnitude or smaller. It is the definite integral of the 

probability density function. 

Dispersion: The characteristic of a random variate to scatter across 

its range. 



 

 

Distribution (of Probability): Generally, a mathematical relationship 

or function relating a random variate and its probability of occurrence. 

Sometimes used to mean “cumulative distribution function “ 

Dynamics: That branch of Physics which studies the motion of 

bodies and systems under the action of forces. 

Electrothermal-chemical: Propellant system for guns under 

development. 

Error: The numerical difference between a measured quantity and the 

“true” or correct value. 

Exterior Ballistics: The study of the motion of projectiles after 

leaving the gun or launcher. Originally applied only to projectiles which 

are not self-powered. 

Extreme spread: Term used in measuring the dispersion of rounds. 

It is the largest distance between any pair of rounds when impacts are 

plotted upon a plane. It is convenient for use in evaluating dispersion in 

small arms firing, as the extreme spread may be measured directly upon 

the target. 

Extreme-value statistics: The study of the probability distribution of 

largest values of a variate. Early applications are to hydrology and other 

natural phenomena. 

Factorial function: Defined for integers only: 

n! = n*(n-1)*(n-2)*...(1). 

Fall of Shot: The pattern made by a group of gun projectiles. 

Gamma function: One of the so-called “special functions” of 

mathematics. It is a generalized factorial function. 

Gaussian: Name often applied to a population distributed according 

to the normal probability density function. 

Gun: Any projectile-throwing device which uses chemical propellant 

or air or gas (or other, pending) to thrust a projectile through a tube and 

thus on toward a target. 



 

 

Histogram: A graph of a tally of the number of data values which 

occur within given limits of the variates. Usually, the data are sorted into 

bins of equal width. 

Howitzer: A field artillery piece with barrel relatively shorter than that 

of a gun. Its lower muzzle velocity gives the projectile a plunging 

trajectory upon the target, useful for engaging targets located on the 

reverse side of hills or behind other obstructions. 

Human Factors: An engineering discipline in which equipment 

design is modified to give greatest efficiency of use by a human operator. 

Interior Ballistics: (In Britain, Internal Ballistics) The study of the 

motion of projectiles inside the gun, including physical, chemical, and 

thermodynamic energy transfers. 

JDAM: Joint direct attack munition. A glide bomb consisting of a 

MARK 84 2000 pound bomb or a BLU-109  2000 pound penetrating 

bomb. Both have Global Position System and Inertial Navigation System 

guidance. 

JSOW: Joint stand-off weapon: A glide bomb in three variants. Two 

are cluster bombs. The third has a high explosive warhead. A later 

version may have a penetrating warhead. All have combined Global 

Position System and Inertial Navigation System guidance. 

Launch Ballistics: The study of the motion of projectiles in the 

transition from gun to free trajectory. Today, more often concerns the 

transition of a rocket or missile from cell, silo, launcher rail or pylon to 

powered flight. 

Laying (of a gun or battery): To point or aim so as to bring fire 

upon the target. 

Log-normal: (Log-normal probability density or distribution) A 

probability function in which the logarithms of the random variate are 

distributed according to the normal probability density. 

Mark I: (Mark One). In naval ordnance, the initial version of a 

particular equipment accepted for regular service. 



 

 

Mean: The mathematical average of a function or set of numbers. For 

a sample of data the mean is the sum of the numbers divided by the 

quantity of numbers. 

Mechanics: That branch of Physics which studies the action of forces 

on rigid bodies and motion. Includes the study of Statics, or bodies at 

rest. 

Median: The center value. One-half of the probability density 

function has variates less than the median, and one-half of the variates 

are greater than the median. The centermost numerical value or data 

point of a sample. 

Mil: A unit of measurement of angles. It is particularly useful for 

small angles. Today the mil is generally taken to be a milliradian, or 

1/1000 of a radian. Thus there are 6,283+ mils in a circle. For small 

angles, the milliradian is approximately equal to the tangent of the angle 

According to General Hatcher, the Infantry adopted a slightly different 

definition of the mil. The Infantry definition is such that a circle contains 

6,280 mils. The Infantry mil is no longer used. The Artillery adopted a yet 

different mil. The Artillery mil is defined so that a circle contains 6400 

mils. 

Missile: Any object thrown. Today usually means “Guided Missile.” 

Mortar: A type of gun having a relatively short barrel, used exclusively 

for high-angle fire. Formerly used as artillery pieces in land warfare and in 

coastal defense forts. Now used primarily as infantry weapons. Some 

were adapted for use in small craft (river patrol boats) in Viet Nam. 

Common calibers in U.S. forces are 60 and 81 millimeter, and 4.2 inch. 

Many foreign armed forces are equipped with 120 millimeter mortars. 

Multivariate (Probability function): A probability function in which 

the probability is determined by the values of two or more random 

variates. 

Munition: Any equipment for war, but especially weapons and 

ammunition 



 

 

Nonparametric: A probability function or statistic which does not 

use parameters. Also termed “distribution free.” 

Normal or Gaussian Random (Process): A process in which the 

probability of occurrence of a given variate is described by the normal 

probability density function. 

Normal Probability Density Function or Distribution: A 

particular probability density function or distribution found to describe 

many natural processes. Has the widest applicability of any probability 

density function. 

Ordinate: In plane Cartesian coordinates, the y-axis. 



 

 

Ordnance: Any equipment provided for military, naval, or other 

armed force. Today, the term is usually restricted to weapons and their 

ammunition. 

Parameter: A variable which determines the position or size or other 

characteristic of a mathematical function. For example, the mean and 

standard deviation are parameters of the normal probability density 

function. 

Parametric Statistics: Statistics based upon probability density 

functions which contain parameters. 

Parent Population: Population from which a sample is drawn. The 

term “Universe” is sometimes used in place of population. 

Pattern: The impact points of a group of rounds. 

PGM: Precision guided munition. A missile, bomb, or other projectile 

with accuracy (maximum error) of 3 meters. 

Population: The total of all individual items under study. In theory, a 

population may be finite or infinite. Some writers prefer to use the term 

“Universe” in place of population. 

Precision: Generally used to mean the same as accuracy. In a 

measurement device or system, may refer to the degree of fineness of a 

measurement. Thus for a given dimension, a measurement made to 

within 0.001 inch is more precise than a measurement made to within 0.1 

inch. 

Probability Density Function or Distribution: A mathematical 

function or graph which describes the probability of occurrence of a 

variate. The integral of the probability density function gives the 

cumulative distribution function. 

Propellant: Chemical material used to generate high pressure gas and 

thereby propel a projectile from a tube. 

Psuedo-random: “False Random.” A process in which a sequence of 

numbers is generated by a device or algorithm. There is nearly no 

correlation between adjacent numbers or between numbers not widely 

separated in sequence. However, the sequence of numbers will eventually 



 

 

repeat. Hence the number sequence is not truly random. Nevertheless, a 

short sequence of numbers is apparently random, and may be considered 

random with small chance of bias. 

Psychovisual: The process or operation of the eye and brain in 

seeing and forming images. 

Quality Control: System to measure and adjust a manufacturing 

process to maintain a product within specified limits. 

Quantization noise: Uncertainty introduced into a measurement by 

the process of representing a signal or variable by finite steps or levels of 

amplitude, phase, frequency, or other characteristic. 

Random: A characteristic of a process in which the end, result, or 

outcome is never definitely known or predictable in advance. 

Range (1): Distance from launch point of munition to target. May 

have components such as slant range, horizontal range, height, or range 

to intercept point. 

Range (2): For a sample of numerical data, the maximum value minus 

the minimum value. 

Round: A projectile of any kind. The term originally referred to 

spherical shot used in early gun designs. 

R/CEP: Ratio of radius to circular error probable. A normalizing 

ratio used to standardize calculations. 

Salvo: A group of rounds fired (or launched) within a short time 

interval at a single target. 

Sample: A finite number of measurements or observations drawn 

from some population, universe, or process. 

Sample size: The total number of data values. 

Sight Adjustment: Change made to a weapon’s sights or sighting 

system to bring the round impact point on to the target. 

Sighting-in: The process of adjusting the sights of the gun or weapon 

so that the projectile strikes the point of aim at a given range. 

Small arms: Arms which are hand-held and carried by one person. 

Today, the term is usually applied only to firearms such as rifles, 



 

 

shotguns, submachine guns, pistols and revolvers. In infantry usage, may 

include grenade launchers and perhaps machine guns. 

Spotting: The process of observing the fall of shot or impact of 

rounds and adjusting the fire so as to bring the maximum effective fire 

upon the target. 

Standard circular normal probability density function: A circular 

normal probability density function in which the standard deviations are 

equal to 1.0 and the means are zero. 

Standard deviation: A measure of scatter or dispersion of a sample 

of data or measurements. Also a measure of the amount of spread of  a 

probability density function. The standard deviation is the square root of 

the variance. 

Stick (of bombs): A group of bombs arranged to be released from an 

aircraft to fall in a row across a target. The term is descriptive of the 

elongated pattern made by the line of impacts created when several 

bombs are released in sequence as the aircraft flies in a nominal straight 

and level path. 

Sturges’ rule: A method for estimating the optimal number of bins to 

use when plotting a histogram. 

Symmetry: If a probability density distribution is an ‘even’ function, 

then p(x) is equal to p(-x), and the distribution is symmetrical about its 

mean. This symmetry may be expected to appear in a histogram of a 

random sample drawn from a population having a symmetrical 

probability density. Similarly, a non-symmetrical probability density 

function may be expected to generate a non-symmetrical histogram. Thus 

the symmetry (or non-symmetry) of a histogram of a random sample 

from an unknown population is an important clue as to the form of the 

probability distribution of the population under study. 

Terminal Ballistics: The study of the effects of a particular design of 

munition upon a target. 



 

 

Theory of Errors: Early term applied to the study of errors and 

uncertainty of measurements, especially the application of the theory of 

probability to that study. 

Trajectory: The path of a round through space from launch to 

impact. 

Tube: Word sometimes used to refer to the barrel of a gun, howitzer, 

or mortar. Thus howitzers may be referred to as ‘tube’ artillery to 

distinguish them from rocket batteries. The distinction is less apt today, 

as many current rockets are launched from tubes. 

Universe: A term used to mean the same as population. The totality 

of all variates that may be observed or that may occur. The total of all 

outcomes of a trial. 

Variance: For a sample, the variance is the mean of squares of 

differences taken between each variate and the mean of all the variates. 

For a probability density function, the variance expresses the amount of 

spread the probability density function has about its own mean. The 

square root of the variance is the standard deviation. 

Variate: A term used to mean a random variable. 

Warhead: That portion of a munition which contains the payload. 

The payload may be explosive, incendiary, smoke, gas, toxin, or 

biological agent. Some munitions such as bullets or mortar, howitzer, gun 

and cannon projectiles do not have separate warheads.  
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INDEX 
 

(numbers refer to chapters) 

(also see glossary) 

 

A 

abscissa 1 

adjustment of fire 6 

aging (in stockpile) 

aim point 6 

aircraft bombs 1, 

artillery 1 

asymmetry 10 

B 

battalion concentration (of artillery) 3 

bias in standard deviation 5 

bin 10 

bivariate 2 

bivariate normal 2 

C 

cell 10 

CEP 1,3 

chemistry (of propellants) 1 

circular error probable 1,3 

circular normal 2 

class interval 10 

combinations 9 

confidence 8 

contour plot 3 

Coriolis 1 



 

 

correction of bias ( in standard deviation 5) 

CPE 3 

curvature (of earth’s surface) 1 

D 

density 2 

density function 2 

dispersion 2,9,10 

E 

electrothermal-chemical 1 

even versus odd (sample size 7) 

extreme 11 

extreme spread 9,11 

extreme-value statistics 11 

F 

fall of shot 1, 

function 2 

G 

guidance system 3 

gun design 1 

gunsight adjustment 6 

gamma function 5 

Gaussian 2 

H 

histogram 10 

homing system 3 

human factors 12 

I 

INS 4 

impact pattern 1 

J 

JDAM 4 

JSOW 4 



 

 

L 

laser 6 

launch damage 4 

laying of gun battery 6 

lethal radius 4 

liquid propellant 1 

low light level 6 

low rate initial production 5 

LRIP 5 

M 

MARK I   12 

mean 1,2,6,11 

mean point of impact 3 

mean versus median 7 

median 1,6,11 

mil 11 

model (small arm as physical model of larger gun) 1 

N 

naval gunfire 1 

NBS 

noise in system 2 

nonparametric 8,9 

normal 2 

O 

odd versus even sample size 7 

ordinate 1 

P 

pattern 1 

polar coordinates 2 

pooling of data 5 

population fraction 8 

position estimation 12 



 

 

propellant 1 

psychovisual 12 

Q 

quality of manufactured product 8 

quantization noise 12 

R 

random 2 

range 1 

RANNUM 7 

ratio (of standard deviations) 

Rayleigh 2 

R/CEP 

reverberation 2 

rotation (of earth) 1 

round 13 

S 

scatter 1 

small arms 1 

shape of pattern 4 

short round 4 

sight adjustment 12 

skew 11 

sorting 10 

spot, spotting 6 

standard deviation 1,2,7,11 

standard normal probability distribution 2 

statistical independence 2 

stick (of bombs) 3,4 

Sturges’ rule 10 

symmetry 10 

T 

tally 10 



 

 

U 

unbiased estimate 7 

V 

variate 2 

variance 1 

vision 12 
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(numbers refer to chapters) 

(see also notes and references at end of each chapter and at end of 

book) 

 

BRADLEY: INTRODUCTION, 10 

CANAN: 4 

GAUSS: 2, 7, 12 

GRUBBS: 5, 9 

GUMBEL: 11 

HOJO: INTRODUCTION, 7 

JACOBSEN: 9 

KING: INTRODUCTION, 10 NOTES, 11 NOTES 

PASCAL: 10 

RAYLEIGH: INTRODUCTION, 2 

STURGES: INTRODUCTION, 10, 11 

WILKS: INTRODUCTION, 8 

WILSON: 10 



 

 

SYMBOLS, ABBREVIATIONS, AND 

ACRONYMS 
 

(also see glossary) 

 

a: alpha, reciprocal of Gumbel slope 

CEP: circular error probable 

COMB(n,r): combinations of n items, taken r at a time 

CPE: circular probable error; meaning same as CEP 

e: 2.71828..., base of natural logarithms 

E.S. : extreme spread 

ETC: electrothermal-chemical 

EXP( ): the number e raised to the power within the parentheses ( ) 

GPS: global positioning system 

G: gamma function 

INS: inertial navigation system 

_: infinity 

JDAM: a glide bomb 

JSOW: a glide bomb 

k: optimal quantity of bins 

LG10: common logarithm; logarithm to base 10 

LN( ): natural logarithm of quantity enclosed within parentheses 

LRIP: low rate initial production 

m: number of trials in binomial probability distribution 

mil: measure of angles 

µ: mu, mean 

n: sample size 

N: sample size 

NBS: National Bureau of Standards (now National Institute of 

Science and Technology) 

N!: N factorial. = N*(N-1)*(N-2)*...*2*1 



 

 

%: percent; parts per hundred 

PGM : precision guided munition 

p: pi, 3.14159... 

f: phi, mathematical function, probability density 

F: capital phi, cumulative distribution function of probability 

P: probability, usually refers to cumulative probability 

p: probability; usually a density function 

p(R): probability density at radius R 

p(x): probability density function of the random variate x 

p(x,y): probability density of point x,y 

q: probability that an event will not occur; used in the binomial 

distribution 

R: radius 

RAN: RANNUM, which see 

RANNUM: computer software routine for generating Gaussian 

(normally) distributed random variates (Gaussian random number 

generator) 

Rc: fraction of given population which is covered by range of sample 

R/CEP: ratio of radius to circular probable error 

sN: Factor used by Gumbel to compute standard deviation of sample 

of size N 

s: sigma, standard deviation 

_: sum of 

_: mathematical integral 

u: location parameter for extreme-value probability distribution 

x: mathematical variable or random variate 

X: measured variable or variate 

Xj: jth value of variate X 

y: mathematical variable or random variate 

Y: measured variable or variate 

YN: factor used by Gumbel to compute location parameter u 

Yj: jth value of variate Y 



 

 

x: variable of integration 

  



 

 

LMC Biography 
 

Lewis Michael Campbell was born on February 28, 1935 in 

Mobile, Alabama. His mother Effie was employed as a business office 

clerk. His father Douglas was a steam boilermaker. His brother “Jim” 

was six years older. Lewis attended public schools, graduating from 

Murphy High School in 1952. A few weeks later he enlisted in the U.S. 

Marine Corps. He was trained as a radar repairman and served at five 

posts in the U.S. and in Japan. He was released to reserve status in 1955. 

Returning to Mobile, he worked at television receiver repair and three 

years as a civilian employee of the U.S. Air Force.  

In 1959 he moved to Tuscaloosa, AL and began attending the 

University of Alabama. He graduated in 1963 with a B.S. in Electrical 

Engineering. In June of 1963 he took a position at the U.S. Naval 

Ordnance Laboratory in White Oak, MD. He married Judith Hartley in 

1968. They had a daughter, Michelle, and a son, Steven. He retired from 

the Lab in White Oak in 1992.  

He had several hobbies, one of which was reading, and his 

favorite subjects were philosophy and history. He had enjoyed shooting 

small arms over the years and made applications of mathematical 

statistics to ballistic dispersion.  

LMC passed away in Bridgewater, VA in 2019. 


